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1 Introduction

Increased water demand for agricultural and urban use has caused lakes around the world to

shrink, a process known as desiccation (Wurtsbaugh et al., 2017). This includes the Great

Salt Lake in Utah, which as of January 2025 had shrunk by 30% (1,059km2) relative to

historic levels. In addition to the direct economic and ecologic impacts of lake desiccation,

there are also potential health concerns arising from possible increases in air pollution due

to wind blown lake bed (playa) dust. While other desiccated lakes are known to contribute

to poor air quality (Owen’s Lake in California for example is the largest point source of

PM10 pollution in the US (EPA, 2017)), it is unclear to what extent desiccation of the Great

Salt Lake will have similar impacts due to differences in playa soil structure and chemical

composition (Attah et al., 2024; Perry, Crosman, and Hoch, 2019).

This paper quantifies the infant health impacts from desiccation of the Great Salt

Lake using a causal inference framework. We first use daily pollution data from a network

of air quality monitors to quantify the change in local air pollution due to playa dust.

This analysis uses temporal variation in lake levels and wind conditions in a difference-in-

difference style framework. We then apply the same framework to create predictions of playa

dust concentrations at given points over time. These predictions are used to estimate the

health impact associated with increased dust exposure due to lake desiccation. We measure

health with individual-level birth outcomes, and identify exposure to playa based on the last

three months of pregnancy for the primary analysis.

We find desiccation of the Great Salt Lake leads to worse local air quality, with a

100km2 increase in playa area increasing PM2.5 concentrations by about 0.5µg/m3. Multi-
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plying the 30% decline in lake area by this effect translates to an extra 5µg/m3 of PM2.5.1

While the largest air pollution increases are primarily concentrated in closer proximity to

the lake (30km), there are far reaching, weaker effects up to 100km away from the lake.

The worsened air quality translates into large, though statistically imprecise, reduc-

tions in health. A 100km2 increase in playa area is associated with increased incidence of

pre-term birth by up to 1%, decreased birth weight by about 1.75g, and a 3 percent reduction

in the number of births. Comparing these results to meta-analysis estimates of the effect of

PM2.5 on birth outcomes (Stieb et al., 2012), our estimated effects are all relatively large –

though still fall within the 95% confidence intervals of the meta-analysis estimates. Our esti-

mated health impacts underscore the need for policy makers to consider health externalities

arising from lake desiccation when considering water allocations and diversions.

This paper is the first to quantify the impact of lake desiccation on infant health

in nearby communities using a causal framework. Existing work documents associations

with adverse health outcomes, with most analyses relying on cross-section comparisons with

respect to lake proximity (Farzan et al., 2019; Gomez et al., 1992). While some work uses

temporal variation in lake levels (Jones and Fleck, 2020), these analyses are unable to fully

account for potential spatial confounding. By exploiting both spatial and temporal variation

in lake levels and wind conditions, our analysis is able to flexibly control for confounding

more fully. Having a better estimate of the true impact of desiccation on health is important

for accurate welfare analyses of alternative water management decisions.

This paper also contributes to the existing literature by modeling heterogeneous,

localized pollution changes from desiccation with reduced form econometric tools. While

the analysis frameworks we use for modeling playa dust have been commonly used in eco-

nomics research on air pollution from other sources (Kim and Gillingham, 2025; Schlenker

and Walker, 2016; Currie and Walker, 2011; Hill et al., 2024), they have yet to be ap-

plied to lake desiccation. Instead, lake desiccation emissions have generally been measured

with extremely local dust sample collection methods (Goodman et al., 2019; King et al.,

2011) or through computationally intensive particle transport models (Abman, Edwards,

and Hernandez-Cortes, 2024). To the best of our knowledge, only Jones and Fleck (2020)
1The EPA air quality standard for PM2.5 is 9 µg/m3 as of February 7th, 2024 (EPA, 2024).
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predict playa dust using econometric tools, though they abstract from spatial heterogene-

ity in their analyses. The findings from our paper show that simpler models can capture

local variation in pollution arising from desiccation. This is useful for subsequent analyses

examining alternative outcomes or other lakes and contexts.

2 Data

2.1 Infant Health

Birth record data containing information on infant health and parental characteristics is

pulled from the National Center for Health Statistics National Vital Statistics system. This

data is a compilation of federal birth certificates, so it covers the universe of births in the US

between 1990 and 2022. Each birth record is geocoded at the pregnant individual’s county

of residence, and contains information on infant health and parental covariates at the time of

birth, which is reported as the birth month and year. From this data, we select our sample

for the health analyses by selecting births that occur to individuals residing within 300km

of the Great Salt Lake and meet certain criteria: is a live birth, is a singleton birth, has

birth weight within reasonable bounds (500-5,000g), and has gestation age within reasonable

bounds (22-42 weeks). Our resulting sample consists of 1,369,363 births total, with 244,216

overlapping the time frame of available air pollution data (2016-2022).

2.2 Air Pollution

Measurements of local air pollution concentrations are from PurpleAir. This data consists of

histories of measured PM2.5, PM10, and PM1 for community based air pollution monitors.2

We collect daily average pollution reports for all outdoor monitors within 300km of the Great

Salt Lake over the time frame from January 1, 2016 through December 30, 2024. The final

sample used in the analyses is an unbalanced panel of 604,005 daily observations over 540

monitors. Descriptive statistics of these monitors are shown in the first column of Table 1.
2The measured pollutants are particulate matter (PM), where the subscript reflects the maximum particle

diameter in micrometers. PM is measured in micrograms per cubic meter, µg/m3.
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Table 1: Descriptive Statistics

PurpleAir Centroids
Panel A: Exposure Variables
Playa area (km2) 1078.1 1040.6

(119.4) (129.5)
Distance to lake (km) 0.0538 0.124

(0.0595) (0.0977)
Wind Direction -0.176 -0.0439

(0.478) (0.504)
Wind speed 1.741 1.863

(0.571) (0.753)
Panel B: Air Pollution
PM10 (µg/m3) 7.816 7.184

(12.71) (10.34)
PM2.5 (µg/m3) 6.514 6.364

(6.408) (5.735)
PM1 (µg/m3) 4.337 4.155

(6.726) (5.588)
Panel C: Infant Health
Birth weight 3291.8

(506.9)
Gestation age 38.56

(1.837)
Number of points 540 27
Number of pollution observations 604,005 62,603
Number of birth observations 248,200

Notes: Table presents descriptive statistics for the PurpleAir pollution monitor data set and the county
population-weighted centroids linked to births. In Panels A and B, each observation is at the point-day
level, where a point reflects a pollution monitor or county centroid. For Panel C, each observation is a birth.
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The advantages of the PurpleAir data are twofold. First, the pollutant measures re-

flect true particulate counts at the monitor’s location, rather than being modeled estimates

derived from satellite data. Second, by using community based monitors the available mon-

itor network is relatively densely populated, as shown in Figure 1. However, because the

data is crowd sourced and not subject to data quality reviews, we follow guidelines from the

US Environmental Protection Agency (EPA) to identify and remove observations with data

quality concerns, as well as apply a correction for overstated levels at high PM2.5 concentra-

tions (Barkjohn, Clements, and Holder, 2022).3 This process results in about 9% of the raw

observations being removed from the sample. Our analyses will focus primarily on PM2.5

since the PurpleAir data aligns more closely with validated EPA monitor data, as shown in

Figure A1.

Because the birth data is geocoded at the county level, for our analyses we construct

an estimate of air pollution at the county population weighted centroid using the PurpleAir

monitors. For each county centroid c on day t, we estimate pollution as the inverse distance

weighted average of readings from PurpleAir monitors within 100km of the centroid.

PM2.5ct =

∑
m

1
Distance2cm

PMmt∑
m

1
Distance2cm

(1)

We use a scaling parameter of 2, where a larger parameter places more weight on closer

observations. This parameter was calibrated by regressing PM2.5 measures from US EPA

managed air pollution monitors on an inverse distance weighted average of PurpleAir PM2.5

measures at the EPA monitors’ locations and selecting the parameter which maximized the

R2 from that regression.4

3Each PurpleAir monitor reports two estimates of each pollutant. The EPA guidelines identify data from
a monitor as being valid if the two measurements for PM2.5 are either within 5µg/m3 or 70% of each other
(Barkjohn, Clements, and Holder, 2022). We further treat measurements with particulate measures over
1,000µg/m3 as missing, and trim the top and bottom 0.5% of the remaining distribution.

4The EPA monitor data is from the Air Quality System (AQS) database. The max R2 value achieved
through the calibration process is 0.75. Figure A1 of the Appendix plots of the IDW average PM2.5 estimates
and true PM2.5 measures.
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Figure 1: Mapping of Data

Notes: Map shows the spatial extent of the Great Salt Lake at its largest extent as well as at the lowest
levels in the sample. Points denote surrounding PurpleAir pollution monitors and county population weighted
centroids that are within 100km of the lake.
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Figure 2: Playa Area Over Time
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Notes: Figure shows playa area over time between 2000 and 2024 from USGS water level gauges. The vertical
dashed line denotes 2016, the start of the PurpleAir pollution sample.

2.3 Playa Exposure

Temporal variation in exposed playa area is calculated from daily readings of water level

gauges maintained by the US Geological Survey. We pull the histories of water levels since

1990 for two gauges in the lake, one in the north half and one in the south.5 These elevation

measures are then mapped to total lake surface area following the crosswalks documented

in Baskin (2005) and Baskin (2006).6 Total playa area is then calculated as the difference

between lake surface area on a given day t and the maximum possible lake area (3,613 km2).

Playa Areat = Maximum Possible Surface Area − Lake Surface Areat (2)

The evolution of playa area over time is shown in Figure 2.

Variation in a given location’s exposure to playa dust is driven in part by wind

conditions, which are captured by wind vectors from Copernicus Climate Change Service.
5Construction of a railroad causeway across the lake in 1959 essentially divided the lake into two halves,

north and south, with potentially different water levels. We use water level measures for the south half from
the gauge USGS 10010000 Great Salt Lake at Saltair Boat Harbor, UT and for the north half from the gauge
USGS 10010100 Great Salt Lake near Saline, UT.

6Total surface area is constructed by summing the surface area of each lake half.
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These data consist of gridded hourly wind vectors since 1990 to present, and are available at

a spatial extent of 0.1◦ × 0.1◦. Each vector is characterized by a u- and v-component which

reflect the speed of air moving towards the east and north, respectively. The magnitude of

the wind vector denotes wind speed, while the angle indicates the direction towards which

wind is moving, so that a wind going towards the north would have a Cartesian angle of 90◦

and a wind going towards the east would have a Cartesian angle of 0◦.

We operationalize the hourly wind vectors, following Schlenker and Walker (2016),

by creating a daily measure of the relative distance between the wind direction and the

direction that would result in a point being exactly downwind of the lake centroid. To

construct this measure, we use the following process. First, for every point of interest, p, we

identify the angle Θp between a vector connecting the lake centroid to the point and a (1,0)

vector following the x-axis, where the lake centroid is located at the point (0,0). Θp is the

angle such that wind blowing in that direction will result in point p being exactly downwind

of the lake centroid. Second, we map each point to the hourly wind directions from the grid

cell overlapping the point and average them to get a daily average wind direction, denoted

θpt. Third, we calculate the distance between the observed wind direction and the downwind

angle using the following equation,

Wpt = cos(Θp − θp,t) (3)

Wpt will be equal to one if the point is perfectly downwind from the lake centroid, equal

to negative one if the point is perfectly upwind, and approach zero as the wind becomes

perpendicular to the downwind vector.

3 Methodology

This section presents the methodology used to identify the effect of exposure to playa dust

on infant health outcomes. To account for measurement issues and bias from spatial sorting,

we use a two stage estimation process where our identifying variation in playa dust comes

from exogenous variation in wind direction, lake levels, and distance from the lake. The
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first stage estimation uses two alternative difference-in-difference style frameworks, where

the lake level impacts the amount of playa dust and wind direction and distance from the

lake change exposure to the dust. The second stage estimation uses the average of the

instrumented daily playa exposure over the last three months of pregnancy to estimate the

impact of aggregate playa exposure on infant health.

3.1 First Stage: Air Pollution

We first quantify the impact of increased playa on local pollution concentrations using the

daily PurpleAir pollution data for PM10, PM2.5, and PM1 and exploiting variation in playa

area and weather patterns over time. We initially outline a simplified analysis using a near-

far difference-in-difference framework, comparing across space changes in PM due to changes

in playa area. This type of analysis is commonly used and provides readily interpretable

results, but abstracts from key aspects underlying the true data generating process. To

better predict PM for the subsequent health analyses, we introduce a model which interacts

the simpler model with local wind conditions following Schlenker and Walker (2016). This

second model is more of a black box approach, but provides more spatially disaggregated

pollution predictions.

The first model uses a difference-in-difference framework, where the first difference is

with respect to playa area and the second is with respect to distance from the lake.

PMpt =
∑
d∈D

βd1(Distancep ∈ d)× Playa Areat + E ′
ptγ + ϕp + ϕt + ept (4)

The outcome of interest is one of the three PM concentrations (PM10, PM2.5, PM1) at monitor

p on day t. The right hand side of the equation includes a set of 11 environment covariates

Ept which consists of precipitation, minimum and maximum temperature, minimum vapor

pressure deficit, their squares, average wind speed, and relative wind angle (Wpt from Eq. 3)

interacted with indicators for whether it is upwind or downwind (negative or positive).7 We

also include point and time fixed effects, ϕp and ϕt respectively. The coefficients of interest
7Precipitation, temperature and vapor pressure deficit are from PRISM Spatial Climate datasets and

measured on a 4km grid.
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are the set of β coefficients, where βd is the coefficient on the interaction between playa area

and an indicator for the distance between the lake and the monitor being in bin d.8 We

define 10 distance bins with cutoffs at 10, 20, 30, 50, 75, 100, 125, 150, 200, 250, and 300

km. In combination, the set of βs trace out the effect gradient of an increase in playa area

over space, relative to the omitted distance bin (250-300km).

The second model augments Equation 4 by incorporating variation in local wind

conditions which could drive differential transport of playa dust.

PMpt = f(Playa Areat,Distancep,Wind Speedpt, Summert,1(Wpt > 0)×Wpt)

+ f(Playa Areat,Distance2p,Wind Speedpt, Summert,1(Wpt > 0)×Wpt)

+ f(Playa Areat,Distancep,Wind Speedpt, Summert,1(Wpt < 0)×Wpt)

+ f(Playa Areat,Distance2p,Wind Speedpt, Summert,1(Wpt < 0)×Wpt)

+ Eptγ + ϕp + ϕm(t) + ept (5)

Similar to Equation 4, the outcomes of interest are daily PM measures and the model includes

point fixed effects. Unlike before, the time fixed effect has been replaced with a linear year

trend and a calendar month fixed effect. Additionally, the impact of playa area is now

captured by the functions f(·) which denote the full interactions of the arguments. Notice

first that distance from the lake now enters as a quadratic rather than a categorical variable.

Second, wind speed is included to capture the potential for higher speed winds to both clear

the air while also transporting particles further. Third, an indicator for the observation being

between April and September (Summert) is included to capture seasonality of wind patterns,

an especially important aspect for Salt Lake which is notorious for winter inversions. And

notice lastly that the constructed wind direction measure Wpt is interacted with indicators

for upwind and downwind to allow the effect of the relative angle to vary.

For both models, the marginal effect of playa area plausibly captures changes in PM

due uniquely to lake desiccation. As playa levels evolve over time, the temporal controls

and point fixed effects capture variation in PM driven by persistent location specific fea-
8Distance between the lake and a point is measured from the lake boundary at the maximum lake surface

area (3,613 km2). Shapefiles of the lake boundary are publicly available from the Utah Department of
Natural Resources.
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tures or area wide temporal variation (such as seasonality or long run pollution reductions).

Additionally, the set of environmental controls captures confounding from environmental

factors that may be related to both lake levels and transport of PM from other sources. The

remaining variation in PM can then reasonably be attributed to lake desiccation, where a

location’s exposure to playa dust is driven by the distance from the lake and the prevailing

wind conditions. We examine the three different types of PM since playa dust is a blend of

these particulates (Goodman et al., 2019).

3.2 Second Stage: Health Outcomes

Having established a link between lake desiccation and PM pollution, we next quantify the

health impacts due to increased exposure to playa dust using a two-sample two-stage least

squares approach. We use the first stage analysis framework to create predictions of playa

dust (using PM2.5 estimates) at the parental residence over the pregnancy duration.9 We

then regress several health measures on this instrumented exposure, giving us the causal

impact of playa dust on infant health.

We predict daily pollution at the county centroids using the first stage frameworks

applied to the county level pollution data. We then aggregate the daily predictions over the

last trimester (98 days) of pregnancy, using the 15th of the birth month as the birth date.10

We use an identical aggregation process for the environmental control variables. This process

generates the following estimate of playa dust exposure at the parental residence over the

last trimester of pregnancy.

Playa Dustcτ =
1

98

τ−1∑
t=τ−98

ˆPM2.5ct (6)

We focus on the last trimester since existing work has shown pollution exposure later in

pregnancy is the most impactful for birth outcomes (Rich et al., 2015; Hooven et al., 2011).

We estimate the health impact from increased playa dust using the following regres-
9We focus on PM2.5 to predict playa dust for the health analyses since it is relevant for health outcomes

and the PurpleAir data aligns more closely with validated EPA data for PM2.5 than for the other particulates
(see Figure ??).

10The birth data records only birth month and year for each individual.
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sion specification.

yiτ = βPlaya Dustcτ +M ′
iτγ1 + E ′

cτγ2 + αc + ατ + εiτ (7)

yiτ denotes a measure of infant health for individual i born in month τ to an individual

residing in county c. We measure infant health directly with four commonly used outcomes:

term birth weight (birth weight if estimated gestation age is between 37 and 42 weeks), term

low birth weight (an indicator for births where gestation age is between 37 and 42 weeks

equal to one if birth weight is below 2,500g), preterm birth (an indicator equal to one if the

estimated gestation age is less than 37 weeks), and very preterm birth (an indicator equal to

one if the estimated gestation age is less than 32 weeks). We differentiate between preterm

and term outcomes since term conditional outcomes capture changes in growth restriction

seperately from impacts on gestational length.

We condition this relationship on several characteristics of the pregnant individual

(Miτ ), a set of environmental covariates (Eiτ ), a linear year trend, and county (αc) and

calendar month (ατ ) fixed effects. The set of individual characteristics consisting of age, race,

education, WIC status, private insurance use, and smoking status are included to improve

precision of our estimates. The set of environmental controls is identical to those from the

first stage, but are averaged over the last trimester. The county fixed effect is based on the

pregnant individual’s county of residence at the time of birth, while the calendar month fixed

effects are based on the infant’s birth month. Standard errors are estimated via clustered

bootstrapping, where we select a bootstrap sample clustering by county for the first stage

and use the same bootstrap sample of counties to estimate the second stage (Björklund and

Jäntti, 1997).

4 Results

4.1 First Stage: Air Pollution

We start by documenting a positive relationship between playa area and PM exposure using

the simple model (Eq. 4) in combination with pollution monitor level data. The coefficient
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Figure 3: Playa Area Effect Gradients
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Notes: Figure plots coefficient estimates and 95% confidence intervals for the interaction terms between playa
area and distance bins from Eq. 4, run separately for each PM measure. The omitted group is 250-300km.
Controls include time and monitor fixed effects and environmental controls. Standard errors are clustered
at the monitor level.

gradients over space are shown for each of the three pollutants in Figure 3, with PM2.5

highlighted in red. For PM2.5, a 100km2 increase in playa area increases particulate concen-

trations by about 0.64 µg/m3 within 30 km of the lake. This effect diminishes with distance,

as expected, and reaches zero by the 100-150km bin. PM10 and PM1 show similar gradients,

though they are relatively noisier. Additionally, PM10 shows a relatively large increase due

to increased playa area, which aligns with the Great Salt Lake playa dust containing more

PM10 than PM2.5 (Goodman et al., 2019).

To contextualize the scale of these results, moving from the 25th to 75th percentile of

playa area over the sample time frame results in a 184km2 increase in playa, which scales to

an average increase of 0.9 µg/m3 in PM2.5 within 100km of the lake, or a 14% increase over

average PM2.5 concentrations.11 Considering instead the long run change in lake levels and

naively assuming a linear relationship between playa area and PM2.5, our estimates indicate
11The average coefficient within 100km of the lake is calculated as the weighted average across the six

relevant coefficients, with weights determined by the distance covered by each bin, and equals 0.49. The 0.9
increase is calculated as 0.49*1.839. The average PM2.5 concentration is with respect to the full sample time
frame for monitors within 100km of the lake, and equals 6.62.
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that PM2.5 is 5µg/m3 higher than would be the case without lake desiccation. While this

is likely an overstatement of the aggregate effect, our marginal effect estimates are actually

substantially smaller than similar estimates from the Salton Sea in California, where Jones

and Fleck (2020) estimate a 100km2 increase in playa would increase PM2.5 concentrations

by 2.22µg/m3.

We next use the extended model to map the marginal playa effect accounting for

variations in playa dust distribution due to wind conditions. The results of this exercise are

shown in Figure 4 for each PM measure, separately for winter and summer months. In each

map, the center point (0,0) denotes the lake’s location, east-west distance is shown on the

x-axis, and north-south distance on the y-axis. The marginal effect across space is calculated

assuming a wind blowing due east along the x-axis of average speed.

For all predictions, playa area significantly increases PM concentrations close to the

lake, with diminishing effects further away. In line with the simplified model, the largest

effects appear to occur within around 30km of the lake. In contrast to the simplified model,

the estimates of effect magnitude from the extended model are significantly higher and more

variable, with hot spots of exposure seeing PM2.5 increase by over 2µg/m3. The figures

also document surprising variation by seasonality. Across both seasons, a general plume of

increased PM covers the downwind areas. However, in summer months, the largest effects

are in areas immediately downwind of the lake, while in winter months the areas immediately

upwind of the lake are the most affected. Further data is needed to understand exactly why

this pattern occurs, but it may reflect microclimates occurring near the lake borders.

Overall, Figures 3 and 4 document significant spatial and temporal variation in the

impact on PM due to changes in playa area. This finding is important in its own right, in

that we show lake desiccation has meaningful impacts on local air quality. Additionally, the

spatial variation in effect from both models and the statistical precision of the simple model

estimates suggest that econometric models are sufficient to capture air quality changes, so

that more computationally intensive models (like particle transport models) are not necessary

to capture average local pollution changes. Lastly, these results provide a foundation for

identifying exogenous variation in playa dust since they show that, with sufficient temporal

and spatial variation, exogenous changes in playa area and wind conditions drive changes in
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Figure 4: Playa Area Effect Contour Plots
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PM2.5 exposure.

4.2 First Stage to Second Stage: Testing Assumptions

To quantify the health effects attributable to lake desiccation, we use identical frameworks

as Equations 4 and 5 to predict exogenous changes in playa dust at the county centroid over

the last three months of pregnancy. For the subsequent health analyses to return the causal

effect of interest, we need the predicted playa dust to be conditionally exogenous (exclusion)

and reflective of the true pollution (relevance). The exclusion restriction holds given the

necessary assumptions underlying the difference-in-difference analyses are true. Specifically,

the first stage analyses assume PM2.5 patterns would have conditionally trended similarly

over time and space in absence of changes in lake levels. For the relevance condition, the

monitor level analyses serve as a proof of concept for predicting playa dust concentrations.

However, it is possible that with the necessary aggregation over space and time to align with

the birth data the instruments for playa dust lose power and violate the relevance condition.

We verify the exclusion restriction by documenting that predicted playa dust is con-

ditionally uncorrelated with characteristics of the pregnant individual that are in turn cor-

related with infant health. For this analysis, we regress covariates from the birth data on

the playa dust predictions, following Equation 7 but omitting individual controls Miτ . The

results are shown in Table 2. Across all demographic covariates in columns 1-7, both models

show no meaningful relationship with playa dust, validating that the instrumental variables

are not influencing infant health through correlations with parental covariates. Columns 8

and 9 do show statistically significant relationships between WIC and private insurance use,

however further examination of the data suggests this relationship arises from a trend break

in WIC and private insurance use in March 2022, when lake levels were relatively low (see

Figure A2 in the Appendix). Removing the data after this period mostly eliminates the

observed relationships, with respect to both statistical significance and magnitude.

We check instrument strength for the second stage by repeating our first stage analyses

at different levels of aggregation and reporting the F-statistics from tests of joint significance

on the interaction terms. The results of this process are shown in Table 3. Column 1 shows

the F-statistics for the daily monitor level analyses shown above, where for both models
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Table 2: Playa Dust and Parental Covariates

(1) (2) (3) (4) (5) (6) (7) (8) (9)

White Black Hispanic Bachelors Married Age Smoked WIC Use Private
Insurance

Panel A: Simple Model
Playa Dust -0.0013 0.0001 0.0025 -0.0027 -0.0029 -0.0107 0.0006 0.0128∗∗∗ -0.0206∗

(0.0018) (0.0008) (0.0025) (0.0064) (0.0041) (0.0427) (0.0011) (0.0049) (0.0111)
Panel B: Extended Model
Playa Dust 0.0001 0.0000 0.0025 0.0014 -0.0030 -0.0235 0.0009 0.0126∗∗∗ -0.0221∗∗

(0.0025) (0.0007) (0.0025) (0.0060) (0.0028) (0.0329) (0.0011) (0.0038) (0.0097)
Sample Mean 0.9064 0.0162 0.1830 0.3767 0.8108 28.7437 0.0224 0.1656 0.6484
Observations 243,626 243,626 238,978 237,273 243,526 243,626 242,736 237,322 243,626

Notes: Table presents coefficient estimates from regressions of parental covariates on predicted playa dust
following Eq. 7. All results control for environmental controls, a linear year trend, and calendar-month and
county fixed effects. Each column is an outcome variable. Panel A uses playa dust predicted by Eq. 4 and
Panel B uses playa dust predicted by Eq. 5. Bootstrapped standard errors are clustered at the county level.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

the F-statistic is well above the rule-of-thumb cutoff for weak instruments of 10. Column 2

reports the F-statistics after rerunning the analyses at the centroid level, using the IDW air

pollution measure (Eq. 1) as the left hand side variable. For both models, the F-statistics

are again above 10. Columns 3 and 4 next aggregate to align with the timing of the birth

sample, measuring pollution and all right hand side environmental and weather variables

with the average over the three months (98 days) before the 15th of each month. For the

monitor sample (Column 3), the instruments appear to still be sufficiently powered, though

relatively weaker than the daily sample. For the centroid sample (Column 4), the F-stat

for the simple model is indicative of a potentially weak instrument. The extended model in

contrast shows a large F-stat, though this may be due to overfitting the data due to the loss

of variation in wind conditions arising from temporal smoothing. Overall, the results of this

exercise advise some caution, since after aggregating to the county - trimester level there

may be weak instrument bias.

4.3 Second Stage: Health Outcomes

The main results show that lake desiccation is associated with adverse health outcomes.

Using the simple model to predict PM2.5, we find a 1µg/m3 increase of playa dust increases
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Table 3: Aggregated Sample F-Statistics

(1) (2) (3) (4)
Daily Monitor Daily Centroid 3-month Monitor 3-month Centroid

Simple Model 24.07 14.66 17.78 4.48
Extended Model 47.70 293.39 11.25 222.32
Point Monitor County centroid Monitor County centroid
Time Day Day 3-months 3-months
Observations 564,749 58,036 7,854 1,639
Notes: Table reports F-statistics from tests of joint significance on the interaction terms from the first stage
models, each run sperately. The simple model denotes Eq. 4 and extended model denotes Eq. 5. Each
column reflects a different level of sample aggregation. Column 1 is at the pollution monitor-day level.
Columns 2 and 4 aggregate to county level. Columns 3 and 4 aggregate to the average over the three months
preceeding the 15th of each month. Standard errors are clustered at the respective point (monitor or county
centroid) level.

the probability of preterm birth by 0.09 percentage points (1% over average rates) and of

very preterm birth by 0.07 percentage points (8%). Conditional on making it to term, we find

birth weight decreases by 3.78g with the probability of being classified as low birth weight

increasing by 0.1 percentage points (4%). Additionally, we find the number of live births each

month in a county decreases by about 4% with increased playa dust, which if we assume

playa dust is exogenous to conception rates would suggest increased rates of unobserved

pregnancy loss. We find similar effects for all outcomes when using PM2.5 predictions from

the extended model as well.

Our estimated health effects are slightly larger than the average health impacts of

PM2.5, as estimated in a meta-analysis by Stieb et al. (2012). With respect to preterm birth

rates, the meta-analysis estimates the average odds ratio from a 10µg/m3 increase in PM2.5

to be 1.05, with a 95% confidence interval bounded by 0.98 and 1.13. Scaling our estimate,

our results indicate a 1.11 odds ratio from an equivalent increase in playa dust, which is larger

but still within the confidence interval of the average estimate. Similarly for birth weight,

the meta-analysis reports an average 23.4g decrease in birth weight per 10µg/m3 increase in

PM2.5, with a 95% confidence interval bounded by 1.4 and 45.5.12 Our estimate which scales
12The meta-analysis reports the effect on birth weight based on PM2.5 exposure over the pregnancy

duration, rather than only the last trimester of pregnancy. If only pollution in the last trimester impacts
birth weight (Rich et al., 2015), an argument can be made that averaging pollution over the pregnancy
duration rather than the last trimester may make the meta-analysis lower than the relevant estimate if
based on the last trimester alone.
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Table 4: Health

(1) (2) (3) (4) (5)

Preterm Very
Preterm

Term
Birth Weight

Term Low
Birth Weight

Live
Births

Panel A: Simple Model
Playa Dust 0.0009 0.0007 -3.7803 0.0010 -7.7017

(0.0020) (0.0007) (2.7731) (0.0010) (14.6877)
Panel B: Extended Model
Playa Dust 0.0018 0.0005 -3.3840 0.0004 -3.6209

(0.0022) (0.0004) (2.9713) (0.0013) (6.4804)
Sample Mean 0.0876 0.0087 3356.8266 0.0231 186.5436
Observations 230,227 230,227 210,070 210,070 1,306

Notes: Table presents coefficient estimates from regressions of infant health outcomes on predicted playa
dust following Eq. 7. All results control for environmental controls, parental controls, a linear year trend,
and month and county fixed effects. Each column is an outcome variable. Panel A uses playa dust predicted
by Eq. 4 and Panel B uses playa dust predicted by Eq. 5. Bootstrapped standard errors are clustered at
the county level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

to a 35g reduction is again larger but within the confidence interval. The larger estimated

health effects from playa dust rather than PM2.5 could potentially reflect additional adverse

effects from the playa composition. In addition to PM, Great Salt Lake playa contains arsenic

and mercury (Jung et al., 2024), which if transported with the measurable PM2.5 could lead

to more severe health effects. Further research is needed to confirm this hypothesis.

We use our analyses to estimate the financial cost due to health expenditures, and

find significant losses from desiccation. We focus exclusively on the direct medical expenses

due to preterm births which are estimated to be $22,690 per preterm birth (gestation age 32-

36 weeks) (Behrman and Butler, 2007). This restriction means our estimated financial cost

will be a significant understatement, since it ignores factors like later life costs ($3,163) and

additional costs from very preterm babies (up to $176,846). To extrapolate to the full range

of lake elevations, we repeat our main analysis on an expanded sample, predicting Playa

Dustcτ for births occurring between 2009 and 2022.13 Additionally, we include the square of

Playa Dustcτ to allow for non-linear health changes. The results from this are shown in Table

A1. We then translate the effect on preterm births into a marginal cost of playa area which
13We assume the first stage relationship between playa area and dust holds across the alternative playa

areas in the longer sample.
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is plotted in Figure 5. We see the marginal cost can be significant, peaking at $1,877,396

(about 83 preterm babies). In line with existing work, the marginal cost diminishes with

more exposed playa, reflecting that additional PM is less impactful when PM is already high

(Weichenthal et al., 2022; Vodonos, Awad, and Schwartz, 2018).

We then compare the estimated marginal health costs with an approximation of the

marginal cost to increase water in the lake, arguably the most straight forward solution to

mitigating desiccation. We assume that the only cost of adding water to the lake is the

monetary cost of purchasing the water, which we estimate using data on one year water

leases in the Western US (Brewer et al., 2008).1415 We plot the marginal cost generated

by the 25th, 75th, and 100th percentile of these prices in Figure 5 for comparison to the

marginal health costs. For additional context, the Office of the Legislative Auditor General

released a report in 2023 that estimated an “annual maintenance [cost] of $15 million” for

dust mitigation on the Great Salt Lake (Utah OLAG, 2023). Given current exposed playa

area (1,059km2), this translates into a water price of $57.32.

We see that relative to the marginal health cost, the marginal water cost is insignifi-

cant for the majority of the price distribution and only for very high water costs are the two

comparable. With respect to mitigation efforts, this means that given current lake levels

(vertical dashed line) and the modeling assumptions, it is optimal to purchase water and

refill the lake so that there is zero exposed playa area for the majority of the water price

distribution. For the highest water price, it is still optimal to refill the lake (the total benefit

exceeds total cost, shown visually by the shaded areas), though doing so would require pay-

ing for some water in excess of its marginal benefit with respect to health in order to move

along the curve towards more beneficial mitigation levels. This raises an interesting dynamic

then for policy makers: When lake levels are extremely low the marginal benefit of covering

playa is also very low. Therefore, as lake levels decline there becomes a point where it is

inefficient to add water to the lake since a significant share of playa must be covered before
14It is a potentially strong assumption that there are no other costs associated with refilling the lake,

however given that the lake is a terminal lake such that all water in the hydrologic basin eventually flows to
it, an argument can be made that the need for infrastructure is limited.

15We focus on the subset of water trades which occur between agricultural water rights holders and
environment based water users. Water prices are reported in inflation adjusted price per acre foot, in 2025
dollars.
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Figure 5: Playa Area Mitigation Cost-Benefit
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Notes: Figure plots marginal costs of playa exposure and mitigation efforts. Preterm costs denotes marginal
cost of exposed playa area due to direct medical expenditures due to preterm births. Marginal costs estimated
using coefficient estimates from Table A1. Mitigation effort marginal costs are based on the marginal cost
of water to cover exposed playa area, with costs derived from three different percentiles of the distribution
of water trade prices: 25th, 75th, 100th. Water prices are in 2025 dollars per acre-foot of water. Lake levels
as of January 2025 are denoted by the vertical dashed line. The gray shaded areas between the preterm cost
curve and the maximum mitigation marginal cost curve denote where marginal mitigation costs are less then
the marginal preterm costs (gain) or greater than (loss).
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any meaningful health gains are made. In contrast, if the lake is prevented from declining

too much then it will always be beneficial to pay the water cost to cover the smaller playa

area since it has large marginal benefits.

4.4 Robustness Checks

We examine the extent that weak instruments are biasing our estimated health effects,

and find that while there likely is bias, it is attenuating our effects towards the null. To

examine the role of weak instrument bias, we compare our main health results to an OLS

specification which is identical to Eq. 7, except which uses observed PM2.5 as the variable

of interest (Table A2). If there is weak instrument bias, our main effects will be biased

towards the OLS estimates. For the simple model, we find that the instrumented effects

are consistently much larger than the OLS estimates, suggesting the bias is not extreme.

Furthermore, if there is weak instrument bias it will be more severe with more instruments.

For the instrument heavy extended model, the estimates are generally attenuated toward the

OLS estimates relative to the simple model. In combination, the results from this exercise

show there is likely some degree of weak instrument bias, though it is driving attenuation of

our effect estimates.

We also test the robustness of our health results to several alternative specifications.

First, we re-estimate our main specification weighting the first stage regressions by the num-

ber of births observed in each county-month. The estimated effects, shown in Table A3,

and directionally similar but smaller in magnitude than our main effects. Second, we re-

estimate our main specification incorporating month-of-sample fixed effects in the second

stage, Table A4. The resulting coefficients are less precisely estimated and are sometimes

differently signed, though the extended model is generally more similar to the main specifica-

tion, potentially reflective of more spatial variation in Playa Dustcτ for identification. Third,

we repeat the main analysis on the extended sample of births from 2009-2022, with Table

A1 showing similar effect estimates for preterm and very preterm but not the other three

outcomes. Lastly, in Table A5 we use a reduced form specification to estimate the health ef-

fects, plugging the simple model instruments directly into the second stage.16. With respect
16We focus exclusively on the simple model since the extended model coefficients are difficult to interpret
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to the omitted distance bin (100-300km), the results are inconsistent with our main effects.

However, comparing the within 10km group to the other within 100km groups does generally

align with our main results, potentially reflective of the changes in PM2.5 being concentrated

in close proximity to the lake. Overall, our results are not especially robust to alternative

specifications, though finer grained geocoding of the birth data is likely to remediate some

of these issues.

5 Conclusion

The findings of this paper establish that desiccation of the Great Salt Lake increases local

air pollution leading to subsequent associations with adverse health impacts. By exploiting

exogenous exposure to playa dust driven by wind and lake conditions, we find a 100km2

increase in playa area increases PM2.5 by 0.49µg/m3 within 100km of the lake. This finding

indicates lake desiccation has large impacts on air quality both with respect to magnitude

and spatial extent. The worsened air quality translates into associations with adverse health

outcomes, with the probability of preterm birth increasing by 1% and birth weight decreasing

by 3.78g per 100km2 of playa area.

Our analysis is subject to some data limitations which may lead to our estimates to

be biased or suffer from limited external validity. In particular, we use birth record data that

is geocoded at the county level and contains only the birth month and year. This requires

us to aggregate our data significantly and leads to weakening of our identification strategy,

potentially leading towards downward bias of our health effect estimates. Additionally, we

use the parental residence at time of delivery, which may not accurately reflect exposure if the

pregnant individual moved or spent a significant amount of time outside of their residence (ie.

at work) during pregnancy. Lastly, the time frame of available PurpleAir data is relatively

short compared to the timeline of desiccation for the Great Salt Lake. This results in us

potentially missing important nonlinearities in the first stage analysis that would arise at

low playa area levels.

Overall the findings from this paper emphasize the importance of accounting for health

externalities associated with lake desiccation when considering water resource management.
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Our simple back-of-the envelope exercise estimates annual total costs from desiccation reach-

ing $1.2 billion at current lake levels due just to preterm birth incidence. This is in contrast

to our back of the envelope estimated mitigation costs ranging between $5.7 million and

$794 million, as well as estimates from the Utah Legislature of an upfront cost of lake miti-

gation of $1.5 billion and annual maintenance cost of $15 million (Utah OLAG, 2023). The

large adverse health consequences due to lake desiccation underscore the an often overlooked

ecologic service provided by water systems: dust mitigation.
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Figure A1: EPA Pollution vs IDW PurpleAir Pollution

Notes: Left panel of figure plots measured PM2.5 from EPA operated monitors against predicted PM2.5

concentrations based on IDW averages of PurpleAir monitors following Eq. 1. Right panel of figure plots
the same for PM10. PM levels are measured in µg/m3.

Figure A2: Trends in WIC and Private Insurance Use
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use in the birth sample on the left y-axis. Exposed playa area over time is shown on the right y-axis.
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Table A1: Health Effects on Full Birth Sample

Preterm Very Preterm Term Birth Weight Term Low Birth Weight Live Births
Panel A: Simple Model
Playa Dust 0.0017 0.0036∗∗∗ 0.0002 0.0004 0.6812 1.1529 -0.0001 0.0008∗ 3.1010 8.5796

(0.0011) (0.0025) (0.0003) (0.0002) (0.8192) (0.0005) (0.0005) (0.0000) (6.7847) (2.3631)
Playa Dust2 -0.0002 -0.0000 -0.0421 -0.0001 -0.6639

(0.0025) (0.0002) (0.0005) (0.0000) (2.3631)
Panel B: Extended Model
Playa Dust 0.0028∗∗ 0.0027∗∗ 0.0006∗ 0.0014∗∗∗ 0.5875 3.6888∗∗ 0.0000 0.0020∗∗∗ 2.6394 15.4547∗∗∗

(0.0013) (0.2463) (0.0003) (0.0006) (1.4849) (0.0001) (0.0006) (10.4288) (4.1835) (0.7478)
Sample Mean 0.0873 0.0873 0.0088 0.0088 3363.8913 3363.8913 0.0220 0.0220 156.2172 156.2172
Observations 553,951 553,951 553,951 553,951 505,614 505,614 505,614 505,614 8,744 8,744

Notes: Table presents coefficient estimates from regressions of infant health outcomes on predicted playa dust
using the sample of births from 2009 through 2022. All results control for environmental controls, parental
controls, a linear year trend, and month and county fixed effects. Each column is an outcome variable.
Panel A uses playa dust predicted by Eq. 4 and Panel B uses playa dust predicted by Eq. 5. Bootstrapped
standard errors are clustered at the county level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table A2: Health Effects OLS

(1) (2) (3) (4) (5)

Preterm Very
Preterm

Term
Birth Weight

Term Low
Birth Weight

Live
Births

PM2.5 0.0002 0.0001 0.2080 0.0000 -1.7207
(0.0003) (0.0001) (0.6711) (0.0001) (1.0617)

Sample Mean 0.088 0.009 3,355.979 0.023 204.120
Observations 212,578 212,578 193,954 193,954 1,103

Notes: Table presents coefficient estimates from regressions of infant health outcomes on observed PM2.5

levels. All results control for environmental controls, parental controls, a linear year trend, and month and
county fixed effects. Each column is an outcome variable. Standard errors are clustered at the county level.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table A3: Health Effects With Weights

(1) (2) (3) (4) (5)

Preterm Very
Preterm

Term
Birth Weight

Term Low
Birth Weight

Live
Births

Panel A: Simple Model
Playa Dust 0.0004 0.0003 -1.7173 0.0005 -2.3434

(0.0009) (0.0003) (1.4124) (0.0005) (9.4110)
First Stage F-stat 3,070.69 3,070.69 3,070.69 3,070.69 3,070.69
Panel B: Extended Model
Playa Dust 0.0010 0.0003 -0.6966 -0.0003 -2.8404

(0.0022) (0.0005) (2.6302) (0.0012) (4.7575)
First Stage F-stat 2,657.63 2,657.63 2,657.63 2,657.63 2,657.63
Sample Mean 0.0876 0.0088 3356.8293 0.0231 194.1938
Observations 230,122 230,122 209,971 209,971 1,254

Notes: Table presents coefficient estimates from regressions of infant health outcomes on predicted playa
dust, weighting observations in the first stage analysis by the number of births that occur in a county-month.
All results control for environmental controls, parental controls, a linear year trend, and month and county
fixed effects. Each column is an outcome variable. Panel A uses playa dust predicted by Eq. 4 and Panel
B uses playa dust predicted by Eq. 5. Bootstrapped standard errors are clustered at the county level.
∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1

Table A4: Health Effects With FE

(1) (2) (3) (4) (5)

Preterm Very
Preterm

Term
Birth Weight

Term Low
Birth Weight

Live
Births

Panel A: Simple Model
Playa Dust -0.0179∗ 0.0004 13.2500 -0.0029 -15.8174

(0.0105) (0.0032) (10.1114) (0.0046) (32.4137)
Panel B: Extended Model
Playa Dust 0.0020 0.0006 -1.0992 -0.0034 -0.7190

(0.0047) (0.0016) (7.6992) (0.0026) (10.5074)
Sample Mean 0.0876 0.0087 3356.8266 0.0231 186.5436
Observations 230,227 230,227 210,070 210,070 1,306

Notes: Table presents coefficient estimates from regressions of infant health outcomes on predicted playa dust
including month-of-sample fixed effects in the second stage analysis. All results control for environmental
controls, parental controls, and county fixed effects. Each column is an outcome variable. Panel A uses playa
dust predicted by Eq. 4 and Panel B uses playa dust predicted by Eq. 5. Bootstrapped standard errors are
clustered at the county level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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Table A5: Health Effects on Reduced Form

(1) (2) (3) (4) (5)

Preterm Very
Preterm

Term
Birth Weight

Term Low
Birth Weight

Live
Births

Panel A: Without Time FE
< 10km -0.0002 0.0005 2.1141 -0.0019 -14.7673∗∗∗

(0.0026) (0.0011) (1.8322) (0.0012) (1.2201)

10-25km -0.0011 0.0006 4.5684∗ -0.0010 -0.4356
(0.0027) (0.0012) (2.5494) (0.0012) (2.8497)

25-50km -0.0035 0.0001 4.5506∗∗ -0.0011 -12.9961
(0.0026) (0.0011) (1.8497) (0.0013) (11.7142)

50-100km -0.0017 0.0003 4.0962∗ -0.0013 -0.4210
(0.0027) (0.0011) (2.0629) (0.0012) (0.7852)

Panel B: With Time FE
< 10km -0.0011 0.0005 2.3009 -0.0018 -14.4084∗∗∗

(0.0028) (0.0011) (1.9933) (0.0012) (1.4660)

10-25km -0.0022 0.0005 3.9509 -0.0008 0.1746
(0.0028) (0.0011) (2.5778) (0.0012) (2.8528)

25-50km -0.0043 0.0002 4.1660∗ -0.0008 -12.5032
(0.0030) (0.0011) (2.2269) (0.0012) (11.8057)

50-100km -0.0029 0.0003 3.8900∗ -0.0012 0.1318
(0.0028) (0.0011) (2.1691) (0.0012) (0.9585)

Sample Mean 0.0876 0.0087 3356.8266 0.0231 186.5436
Observations 230,227 230,227 210,070 210,070 1,306

Notes: Table presents coefficient estimates from regressions of infant health outcomes on distance from the
lake, playa area, and their interaction. All results control for environmental controls, parental controls, a
linear year trend, and month and county fixed effects. Each column is an outcome variable. Standard errors
are clustered at the county level. ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1
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