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Abstract

Worsening drought under climate change may pose a threat to electricity markets,

since thermal electricity generation can be an extremely water intensive process. En-

dogenous changes in the types of technologies used to generate electricity may mitigate

this threat, but this adaptation is largely overlooked in the existing literature. This

paper studies the impact of drought on electricity markets accounting for both the

direct impact on production and the indirect effect through technological adaptation.

To estimate the production effect, I exploit temporal variation in drought conditions

to show that drought shocks shift generation away from high water use thermal plants,

and are associated with up to a 30% increase in wholesale prices. To incorporate tech-

nological adaptation, I estimate a model of investment and production in the Texas

electricity market, which is novel in incorporating drought as a determinant of produc-

tion costs. I apply counterfactual climate change scenarios to the model and find that

worse future drought decreases investment in high water use plants by up to 18%, and

increases investment in higher emissions, dry cooled plants. Ignoring this adaptation

overestimates the increase in prices under drought by up to 17%. The findings in this

paper highlight the importance of accounting for endogenous changes to the grid, both

with respect to optimal policy implementation and measuring grid emissions.

*University of Rochester, h.harris@rochester.edu. For helpful feedback and suggestions, I thank Elaine
Hill, Lisa Kahn, Ronni Pavan, John Singleton, Mar Reguant, Sheldon Du, Gautam Gowrisankaran. All
errors are my own.
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1 Introduction

Climate change exacerbates drought conditions, making drought events both more frequent

and more severe (USGS, 2023). Droughts in North Carolina (2007), Texas (2011), and

France (2022) have shown that this is potentially a threat to electricity markets, since thermal

electricity generation (such as from coal and natural gas) can be an extremely water intensive

process (Averyt et al., 2011).1 In the short run, drought shocks may reduce production from

high water use thermal plants, with other, less efficient, plants increasing production to

substitute. In the long run, depending on investment costs, firms may adapt to increased

drought by shifting away from water intensive plants and instead investing in more water

efficient technologies. These drought-driven changes in the set of generating technologies

could in turn translate into changes in wholesale energy prices, grid reliability, and overall

emissions.

Understanding the risk posed by climate change-induced drought requires estimating

the direct, short-run effect of drought on production as well as the endogenous changes

in the mix of generating technologies. However, existing work in this area has focused

almost exclusively on the former, using either retrospective analyses of drought given the

historic technology mix or detailed climate simulations with assumed, exogenous technology

mixtures. By omitting adaptation of the technology mix, these existing studies have limited

external validity with respect to projecting future climate impacts.

This paper fills this gap in the literature by estimating the impact of drought on elec-

tricity markets, accounting for both the direct impact on production and adaptive changes in

the technology mix. I start by showing that drought reduces generation from high water use

plants, with the lost generation being replaced by more costly, less water intensive plants. I

then document potential investment-based adaptation: investment in high water use plants

is negatively related to worse historic drought conditions. Lastly, I use these historic rela-

tionships between electricity production and drought to microfound an empirical model used

to simulate electricity production under counterfactual future climate scenarios. The model

is unique in incorporating drought as a production input, which results in the equilibrium

1In the U.S. about 80% of total electricity generation comes from thermal generators (EIA, 2024).
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technology mix being endogenous to future drought conditions. The counterfactual anal-

yses predict that under more severe future drought conditions the equilibrium technology

mix reduces investment in high water use plants by up to 18%, and increases investment

in less efficient, dry cooled thermal plants. I find that this shift in investment reduces the

increase in energy prices observed during drought, such that omitting endogenous investment

overestimates the drought-period price-level increase by up to 17% ($1.81).

I first estimate the direct impact of drought shocks on thermal production in the spot

market, expanding on existing work by considering both the drought conditions where the

plant is located, as well as the market wide drought conditions (Eyer and Wichman, 2018;

Mamkhezri and Torell, 2022; Qiu et al., 2023).2 For this analysis I use panel data on drought

conditions and plant level production and prices in Texas. I find that firsthand exposure

to a worse drought shock reduces generation from high water use plants, while dry cooled

plants increase generation in response to worse market wide drought. This finding highlights

the importance of market equilibrium in determining the drought effect. The drought-driven

changes in generation are associated with a significant increase in wholesale energy prices,

with a novel finding that there are larger price effects during non-peak hours when quantity

demanded is low (McDermott and Nilsen, 2014). This finding is indicative that the available

technology mix is important for determining the price effect.

I then exploit the temporal variation in long run drought trends to document that

plant investment pushes the technology mix towards dry and non-thermal plants after peri-

ods with worse average drought conditions. To the best of my knowledge, there is no other

quantitative evidence documenting the relationship between power plant investment and

drought. With respect to understanding the impact of climate change, this result suggests

that it is not prudent to extrapolate from the estimated production effects, since the exposed

set of technologies is related to long term drought conditions. To explicitly accommodate en-

dogenous adaptation of the technology mix for counterfactual analyses of drought conditions

2Focusing on Texas allows me to estimate the direct impact of drought on thermal generation since there
is negligible hydroelectric generation in this market. Some existing work which also examines drought at
the plant’s location versus drought elsewhere in the market has found increases in thermal generation due to
drought shocks in contexts with significant hydroelectric generation, likely due to thermal plants increasing
production to offset the lost hydroelectric generation (Eyer and Wichman, 2018; Qiu et al., 2023). To the
best of my knowledge there is no other research looking at both plant level and market wide drought in a
context without hydroelectric generation.
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under climate change, I combine the reduced form results into a structural model.

I develop a model of investment and production where plants make a one time invest-

ment in generating capacity, then produce electricity in response to an equilibrium wholesale

price in a repeated competitive market. Each plant is assigned both a location they can enter

into and a technology type, which jointly determine the plant’s investment costs, operating

costs, water needs and drought exposure. Plants first choose how much capacity to build

to maximize their expected sum of discounted profits, less the associated investment costs.

They then produce electricity each period, subject to location specific environmental shocks

and the capacity constraint determined by the investment decision. Non-thermal plants

produce electricity based on exogenously determined productivity draws, reflecting the de-

pendence of these plants’ production on natural factors like sunshine and wind. Thermal

firms instead choose their optimal production taking prices as given. The equilibrium objects

of interest are the resultant technology mix and wholesale energy prices. My model aug-

ments similar models of electricity markets (Elliott, 2022; Reguant, 2014) by incorporating

drought conditions as a determinant of production costs.

I estimate the model working backwards in two steps, first estimating the plants’

production costs then estimating the investment costs. For production costs, I invert the

plants’ first order conditions and solve for the cost parameters using a Tobit specification to

accommodate censoring arising from the capacity constraints. The parameter estimates align

with the motivating analyses, with average costs increasing by up to $35/MWh for high water

use plants during extreme drought conditions, but no meaningful change in production costs

for other thermal plants. For investment costs, I again use the plants’ first order condition to

solve for optimal capacity investment as a function of the plants’ expected future marginal

profit flows. To estimate expected future marginal profits I assume that plants have rational

expectations over future prices conditional on the realized state variables and previous prices,

and that they believe prices are unresponsive to their decisions.

To simulate the impact of climate change-driven drought on electricity supply, I com-

bine my estimated model with drought predictions from standard climate change models

(Zhao and Dai, 2022). I use drought distributions for 2070–2099 under two alternative cli-

mate change scenarios with different drought severity forecasts: low-to-moderate and high.
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I find that relative to the baseline technology mix (without changes in drought conditions),

there are shifts in investment away from high water use and towards dry cooled plants.

For the high drought severity scenario, the amount of high water use capacity declines 18%

(2,487 MW) from baseline. With respect to prices, I find that endogenous adaptation reduces

prices both during drought and non-drought conditions. Existing literature would suggest

that this decrease in prices is a progressive, welfare improvement (Pashardes, Pashourtidou,

and Zachariadis, 2014; Chirakijja, Jayachandran, and Ong, 2024). However, beyond the di-

rect impacts on the market, the change in the technology mix due to drought raises concerns

about changes in plant externalities. Since dry cooled plants are relatively dirty, a back

of the envelope calculation shows that the technology mix shift is associated with a 0.1%

increase in grid emissions under the high drought scenario.

The results from the analyses in this paper have important implications for grid sta-

bility, end consumer prices, and energy policy. Adaptive investment shifts capacity away

from high water use thermals and towards dry cooled technologies. Considering this en-

dogenous change is important for designing policies surrounding investment in non-thermal

technologies that account for changed future energy prices and returns to non-thermal plants.

Additionally, the spatial distribution in growth of emissions is important to consider from

an environmental justice lens.

This paper contributes to the literature on the consequences of climate change by

providing the first analysis that accounts for endogenous technological adaptation when

estimating the impact of drought on electricity generation.3 Within this literature, there is a

subset of existing work using retrospective analyses to estimate the impact of historic drought

shocks with an exposed, fixed set of plants (Scanlon, Duncan, and Reedy, 2013; Herrera-

Estrada et al., 2018). Extrapolation of these results potentially understates the impact of

climate change driven drought, since plants in areas exposed to more drought may have

already taken adaptive measures. Alternatively, another subset of literature uses climate

3Existing work has shown climate change is already impacting people around the world in almost every
facet of life, including food security (Deschênes and Greenstone, 2007; Burke and Emerick, 2016), natural
disasters (Botzen, Deschênes, and Sanders, 2019; Desmet et al., 2021), and heat-related mortality (Deschênes
and Greenstone, 2011; White, 2017). With respect to energy, most of the existing work is focused on demand
side changes (Cline, 1992; Aroonruengsawat and Auffhammer, 2011; Auffhammer, Baylis, and Hausman,
2017).
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model simulations relying on assumptions about what the future generating mix will be

that abstract from drought (Poch, Conzelmann, and Veselka, 2009; Koch and Vögele, 2009;

Harto and Yan, 2011). This approach may overstate the climate change impact by assuming

the generating technologies do not adapt to changes in drought. My analysis bridges these

existing works by providing novel evidence that drought results in technological adaptation,

and new quantification of the supply side impact of climate change explicitly accommodating

this endogenous investment.

This paper also builds on existing models of firm investment decisions, in particular

with spatially distributed costs or restrictions. The existing work in this area is largely fo-

cused on the impact of industrial policy and environmental regulations in determining invest-

ment across many industries (Gowrisankaran and Town, 1997; Ryan, 2012; Fowlie, Reguant,

and Ryan, 2016). For electricity markets in particular, significant consideration has been

given to understanding how spatial characteristics and policies influence investment in alter-

native generation technologies (Fell and Linn, 2013; Butters, Dorsey, and Gowrisankaran,

2021). However, to the best of my knowledge none other than my paper consider the poten-

tial role of environmental characteristics or climate change in determining investment.4

The remainder of the paper is structured as follows. Section 2 provides background

information on generation technologies and the market and Section 3 details the data used.

Sections 4 and 5 present reduced form evidence on the relationship between drought and

electricity markets, while Section 6 incorporates these relationships into a structural model,

estimated in Section 7. Section 8 uses the model to run counterfactual analyses and Section

9 concludes.

4Chen, Fu, and Chang (2021) most closely fill this gap using reduced form analyses to examine the
relationship between installed capacities of wind and solar as a function of greenhouse gas emissions, extreme
temperatures, and extreme weather events.
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2 Generation Technologies and ERCOT Overview

2.1 ERCOT Market Structure Overview

The analyses focus on the Electricity Reliability Council of Texas (ERCOT), which has

several features making it an attractive setting. First, ERCOT is a large market both in

terms of transaction volume and spatial area, serving 26 million consumers across Texas.

Second, it is isolated from other grids, limiting the impact of imports or shocks to systems

outside of Texas.5 Third, within ERCOT there is negligible hydroelectric generation, ruling

out indirect effects of drought on thermal generation through equilibrium impacts due to

changes in hydroelectric generation.6 Lastly, ERCOT was restructured in 1999, and while

there is some evidence of strategic behavior in this market, it is largely considered to be

competitive (ERCOT IMM, 2023; Woerman, 2023).7

The market operates through an auction framework, with the end result that power

plants sell electricity to the grid and receive a common price, which is determined by the

operating costs of the marginal plant that fills demand. The auction structure also results

in plants operating in order of least cost. This means that in periods of low (high) demand,

the marginal plant is relatively low (high) cost leading to a lower (higher) wholesale price.8

More detailed information on the market structure is available in Appendix Section A.1.

2.2 Comparison of Alternative Generation Technologies

Power plants rely on different types of technologies to generate electricity, which are subject

to trade-offs between their ability to respond to changes in demand, efficiency9, and water

needs. Non-thermal technologies, such as wind and photovoltaic generators, produce energy

subject to environmental conditions and are generally considered non-responsive to demand.

Thermal technologies on the other hand produce electricity by burning fuel, allowing them

5There are only 5 interconnection points with other grids, which can contribute less than 1% of total
capacity.

6Hydroelectric accounted for less than 0.1% of total generation in 2022.
7The Herfindahl-Hirshman index of concentration was 187 in 2022.
8An important caveat to this framework is that in actuality there can be location specific prices resulting

from transmission constraints, leading to some cross-sectional variation in prices. Between January 2011 and
January 2024, 75% of hourly location specific prices were within 5% of the market wide average price.

9Measured as the amount of energy required to produce one kWh of electricity.
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to be more responsive to demand. Within thermal generators, there is variation in demand

response and efficiency, with the most demand responsive technologies generally also having

moderately lower efficiency (EIA, 2023; Joshi et al., 2020).

How a thermal plant is cooled determines the plant’s water needs and impacts the

plant’s efficiency. High water use plants pull cooling water from a nearby source and then

return the now warmer water back to the source. By pulling cold water each time, the plant

uses minimal energy for cooling but requires a significant amount of water. In contrast, low

water use plants reuse the cooling water, reducing water needs but also reducing a plant’s

efficiency by 2-5% (World Nuclear Association, 2020). Lastly, plants may be cooled without

water (dry) but face larger reductions in efficiency (EPRI and Commission, 2002). Figure 1

shows that the differences in water needs, as measured by withdrawals, across technologies are

significant.10 More detailed information on generation technologies is available in Appendix

Section A.2.

3 Data

I combine data from several sources to create a monthly panel covering power plants across

the US from 2001 to 2023. The data consist of three key parts: power plant characteristics,

drought conditions, and, for the subset of plants in ERCOT, spot market data. These

are detailed further in the subsections below. Additional data sources and details are in

Appendix Section B.

3.1 Plant Characteristics

Data on power plant locations and characteristics are from the US Energy Information

Administration (EIA), form 860. This data covers all plants with at least 1 MW of generating

capacity across the US since 2001. For each plant, I observe the plant’s location coordinates,

total production (nameplate) capacity, modal fuel type, and the year and month that the

plant was first operational and retired, if applicable. I define thermal plants as those that

10For this project, I focus on variations in water withdrawals rather than water consumption. Since the
analysis is focused on how drought impacts the amount of water available to a plant, I focus on withdrawals
as being the relevant metric.
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Figure 1: Water Withdrawals by Technology

Note Figure plots the median volume of water withdrawn per MWh of electricity produced. Technologies are
disaggregated along the x-axis, first by cooling and then by fuel type. Values are collected from Macknick
et al. (2011).

primarily use coal, natural gas, or petroleum for fuel and non-thermal plants as those that

primarily use wind or solar.11 I also observe the plant level cooling system since 2009 for

plants over 100 MW which I use to classify thermal plants into three water use categories:

high, low, and dry. Due to data limitations, I drop plants with multiple cooling technologies

from my sample and assume that plants had the same technologies pre-2009 as they do

post-2009.12

Characteristics of the plant sample for both the US and ERCOT are presented in

Table 1. In both markets, high and low water use plants have significantly larger capacities

than dry and non-thermal plants, so that even though there are less of these plants they

make up a significant share of generation and capacity. In ERCOT, non-thermals play a

larger role compared to the US average, while high water use plants produce relatively little.

11Nuclear is omitted from my categorization of thermal generators because nuclear plants have unique
operating features that make them distinct from the other thermal plants. I also exclude hydroelectric
plants.

12Of the 1,098 thermal plants for which I observe cooling information, 11% are observed with more than
one type of operating cooling system.
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Table 1: Power Plant Characteristics

Non-thermal High Water Low Water Dry
Panel A: US Aggregate Statistics
Number of plants 7,200 295 522 3,030

Percent of total capacity 21 16 38 25
(0.44) (0.25) (0.23) (0.06)

Percent of total generation 22 13 54 11
(4.56) (1.03) (3.33) (1.44)

Panel B: US Plant Statistics
Operating year 2016.12 1958.81 1987.69 1991.77

(5.87) (11.90) (20.68) (22.18)
Age at retirement 19.67 59.23 43.55 30.14

(10.59) (11.17) (15.10) (20.64)
Mean capacity (MW) 32.55 589.74 796.12 88.75

(73.03) (753.98) (710.43) (227.43)
Mean generation (GWh) 7.81 144.29 274.79 11.76

(19.01) (224.21) (248.12) (55.35)
Panel C: ERCOT Aggregate Statistics
Number of plants 380 27 77 259

Percent of total capacity 37 12 39 13
(0.88) (0.25) (0.66) (0.06)

Percent of total generation 36 4 50 10
(8.10) (1.09) (6.21) (1.37)

Panel D: ERCOT Plant Statistics
Operating year 2015.47 1963.52 1986.00 2009.00

(5.97) (12.94) (20.31) (17.36)
Age at retirement 12.25 44.80 45.46 26.07

(3.19) (9.70) (14.21) (17.90)
Mean capacity (MW) 130.41 580.34 674.44 67.61

(118.31) (572.99) (451.22) (194.70)
Mean generation (GWh) 35.31 77.61 246.89 16.07

(35.95) (93.82) (180.17) (65.12)
Non-zero generation indicator 0.97 0.76 0.97 0.96

(0.17) (0.44) (0.17) (0.19)

Note Table presents descriptive statistics for power plants in the US (Panels A and B) that were operational
at any point since 2000 and additional statistics for the subset of power plants located in ERCOT (Panels
C and D). Data is from January to December 2022. Standard deviations, shown in parentheses, are taken
over both plants and time.
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Figure 2: Map of Average Drought

Note Figure maps PHDI index values for NOAA climate divisions in Texas for September of 2005 and 2020.
Hash marks denote the beginning of drought severity category defined by NOAA.

3.2 Drought Data

Drought and monthly total precipitation data are collected from the National Atmospheric

and Oceanic Administration’s (NOAA) Climate Division Dataset (Voase et al., 2014). I de-

fine drought using the Palmer Hydrologic Drought Index (PHDI) which measures hydrologic

drought (ie. changes in stream flows or reservoir levels) on a scale of -10 to 10, with positive

numbers reflecting more severe drought and 0 indicating normal conditions.13 Measuring

hydrologic drought in this setting is important since it better reflects the water supplies that

are actually available to power plants, compared to simply precipitation or shorter term

drought measures.

The PHDI is measured and normalized at the climate division level, where climate

divisions are climatically similar areas within the US defined by NOAA (Voase et al., 2014).

The normalization process means that drought is interpreted as a deviation away from the

climate division’s average water availability. Because of this feature of the drought measure,

identification for the subsequent analyses stems from cross sectional and temporal differences

in the deviation of conditions from local normal conditions. Figure 2 presents a visual

example of this variation.

13I scale the raw PHDI data by -1 to make worse drought a more positive number for ease of interpretation.
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3.3 Market Data

The spot market data combines monthly plant level net generation from EIA-923 with ER-

COT market demand and prices.14 For demand, I aggregate hourly data to a monthly mea-

sure of market wide load (total quantity delivered). Market average and location specific

prices are available in 15 minute intervals since 2010, which I average over time to construct

both average and location-specific monthly prices.15 I also construct peak and non-peak

period prices for each month by averaging the 15 minute prices over the peak (2pm to 9pm)

and non-peak (9pm to 2pm) hours of demand, respectively.16

4 Empirical Evidence on Spot Market Outcomes

This section uses data on plant production, prices, and drought to estimate the effect of

a drought shock on electricity production. I first show that direct exposure to drought

reduces generation from high water use plants, while worse market wide drought increases

generation from dry plants. This result captures both the direct impact of drought on plant

production as well as the indirect effect working through changes in the market equilibrium,

with dry plants substituting for high water use plants. I then show that worse market wide

drought shocks lead to substantially higher wholesale prices, with consistently larger effects

during non-peak hours. In combination with the first result, this heterogeneity reflects the

importance of the substitute set of generators in determining the total price effect of a

drought shock.

4.1 Methodology

I regress measures of production and price on two measures of drought. I measure drought

at the plant’s location, Droughtl,t, using the PHDI value of month t for the climate division

l where the plant is located. I also include the average drought elsewhere in the market,

14I drop February 2021 due to an extreme winter storm which resulted in outlier market data.
15I use prices from the day-ahead market. By location specific prices I mean the hub-level prices, detailed

in Appendix Section A.1.
16The hours used to define the cut-offs for peak and non-peak hours are from the ERCOT load data and

reflect the boundaries for above and below the top tercile of average hourly demand.
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Drought−l,t, which is the average of the PHDI values in month t across the nine other climate

divisions in Texas. I use standard cutoff PHDI values to categorize both drought measures

into five bins: no drought, mild, moderate, severe, and extreme.17 I use categorical measures

of drought to allow for non-linearities in the production response. Note that Drought−l,t

mechanically reflects much more severe total drought than Droughtl,t, since for Drought−l,t

to be classified as severe the average of the index across nine climate divisions must be

sufficiently high, whereas Droughtl,t relies only on conditions in one climate division.

For the sample of operating, utility owned plants in ERCOT, I estimate the following

specification for plant i in location l in period t:

yi,t = g(
∑
z∈Z

αzDroughtl,t +
∑
z∈Z

βzDrought−l,t + ΓXi,t + ϕl + ϕm(t) + εi,t) (1)

The vector of covariates Xi,t always includes a market level linear year trend and quadratic

in local temperature. For generation outcomes, Xi,t also includes the location level price for

the plant, instrumented for by total ERCOT load, while for price outcomes Xi,t includes the

natural log of total ERCOT load. I also include month-of-year, ϕm(t), and climate division, ϕl,

fixed effects to account for seasonality in production and unobserved regional characteristics

such as operating expenses or non-market production needs.18 Standard errors are clustered

at the level of spatial variation in the drought measure, which is the climate division level.

For price outcomes I also cluster at the month-of-sample level to account for cross-sectional

correlation in the error terms arising from assigning location level prices to plants.

For generation outcomes, I use two measures of production yi,t to understand the

intensive and extensive changes in generation across technologies. For the intensive margin,

yi,t is the share of capacity used measured as the total amount of energy generated (MWh)

divided by the plant capacity (MWh). Because plants cannot produce negative energy or

above capacity, even if it would be optimal to do so, the observed amount of energy produced

is a censored measure of the true optimal amount of energy generation. Because of this

17I drop observations where the PHDI is less than -4, since extreme wetness could be indicative of other
environmental shocks that could impact generation (ie. hurricanes or flooding).

18I use climate division fixed effects instead of plant level so that the reported marginal effects are consistent
(Chamberlain, 1980).
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censoring, when using the share of capacity used as the outcome of interest, the function

g(·) in Equation 1 reflects the mapping from the linear regression specification to a tobit

model, with censoring at values zero and one. For the extensive margin, yi,t is an indicator

for positive net generation (ie. plant is running).19 The unconditional probability that a

given plant is running is generally quite high (eg. 75% for high water use, 93% for low water

use), so g(·) for this outcome is defined as the cumulative distribution function of a standard

normal to map Equation 1 to a probit model. I estimate Equation 1 separately for each

of the four technology types to allow for greater flexibility in the relationship between the

covariates and production outcome measures.

For price outcomes, I focus on the average price, the average peak price, and the

average non-peak price using the location level prices. I use the natural log of these average

prices as the outcome variable to allow for interpretation of the coefficients of interest as

a percent change. I estimate Equation 1 only once, combining all technology types, since

each firm is a price taker and as such price received should not vary by technology type,

conditional on operating.

4.2 Identification

Interpreting α and β as the causal effect of drought conditions on plant production through

cooling water supplies requires the assumptions that drought is conditionally exogenous and

only impacts production through cooling. Given the stochastic nature of drought shocks

the first assumption seems generally reasonable. However, through failures of the second

assumption the exogeneity assumption may also fail.

First, drought could be related to shifts in the demand curve for example by in-

creasing electricity use for irrigation or by increasing air conditioning use through a positive

correlation with temperature (Hoerling, 2018). These correlated demand shifters would act

as confounders for estimating the supply side shocks by impacting both prices and produc-

tion. To account for this potential confounding, I control for the quantity demanded in the

19Due to the energy demands associated with turning generators on and off, in the data there are plants
with negative net generation in a month. As a simplification I replace negative net generation values with
zero.
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price regressions and average wholesale energy prices in the production specification. Note

that since generation may influence prices through unobserved, aggregate shocks, I instru-

ment for price with load which is standard in the literature (Bushnell, Mansur, and Saravia,

2008). This instrument is valid since short-run electricity demand is generally considered

price inelastic. A more thorough discussion on this is presented later in Section 6.3.2.

Second, there could be confounding from additional drought-related supply shifters,

most notably natural gas prices. Natural gas is increasingly mined through water intensive

hydraulic fracturing methods, often in Texas, so that drought could simultaneously affect

thermal plants’ fuel costs in addition to cooling water supplies (Stevens and Torell, 2018).

This dynamic may result in upward bias of effect magnitude, since the returned estimates

would jointly capture the direct drought effect and a fuel cost effect, and is not easily solved.

Because ERCOT is a large consumer of natural gas, changes in ERCOT generation could

influence natural gas prices so that controlling for fuel prices would implicitly control away the

effect of interest.20 While I am unable to fully eliminate this source of bias, comparison of the

estimated effects across technology types should be relatively unbiased since all technology

types rely heavily on natural gas and therefore subject to the same input price shock.

4.3 Results

4.3.1 Generation

Local drought conditions reduce generation from high water use plants but have negligible

impact on generation from other technologies. As shown in Figure 3, while there is no

significant change for the probability a plant is generating (left panel), the marginal effect

estimated for generation as a share of capacity is steadily decreasing with drought severity for

high water use plants (right panel). Conditional on the average drought outside of a plant’s

climate division, entering into severe drought reduces the share of capacity used by high water

use plants by 3.3 percentage points relative to non-drought conditions, conditional on non-

zero generation. The average share of capacity used by high water use plants when generating

is 17%, making the 3.3 percentage point reduction an economically significant 19% decrease.

20Natural gas used for electricity generation in Texas accounted for about 15% of the national total of
natural gas used for electric power in 2023 (EIA, n.d.).
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Figure 3: Effect of Drought at Plant Location

Note Figure plots marginal effect estimates for the impact of drought at the plant’s location on the probability
the plant has non-zero generation (left panel) and the share of capacity used for generation (right panel).
The analysis is run separately for each of the four technology groups shown in the legend. Non-drought
conditions are the omitted category. Standard errors are clustered at the plant level. 95% confidence
intervals are denoted by the vertical bars.

For the other technology types, the marginal effect estimates for both the intensive and

extensive production margins are fairly stable across drought conditions, reflecting a limited

drought effect. These findings show that direct drought exposure is costly for high water use

plants but not for less water intensive plants.

Average drought conditions everywhere else in the market instead appear to affect

only dry cooled plants, increasing both the probability of generating and the average share of

capacity used to generate. As shown in Figure 4, the marginal effect estimates are generally

increasing with drought severity for both generation outcomes for dry plants. Conditional

on the drought inside of a plant’s climate division, entering into severe average drought

everywhere else in the market increases the probability a dry plant is running by 1.8 per-

centage points and the share of capacity used by 1.8 percentage points, relative to average
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Figure 4: Effect of Average Drought Elsewhere

Note Figure plots marginal effect estimates for the impact of average drought elsewhere in the market on
the probability the plant has non-zero generation (left panel) and the share of capacity used for generation
(right panel). The analysis is run separately for each of the four technology groups shown in the legend.
Non-drought conditions are the omitted category. Standard errors are clustered at the plant level. 95%
confidence intervals are denoted by the vertical bars.

non-drought conditions. The average share of capacity used by dry plants when producing

is 38%, making a 2.5 percentage point increase a 7% increase. The marginal effect esti-

mates for the other technologies are again fairly stable across drought severity. It is worth

noting that there are small but statistically insignificant increases in the probability that

non-thermals are running, a result which could be spurious or may reflect optimizing behav-

ior from non-thermal plants (eg. timing of planned outages). Overall, these results suggests

that in response to market equilibrium changes arising from the adverse impacts of drought

on high water use plants, dry cooled plants increase production to substitute for the affected

high water use generation.

The results from this analysis roughly align with results from similar analyses in

existing work. For example, both Eyer and Wichman (2018) and Mamkhezri and Torell

17



(2022) find relative increases in generation from dry cooled plants during drought conditions

in Texas over similar time frames. While direct comparison of estimates is difficult, since

these papers only consider local drought conditions, in general my coefficient estimates are

significantly smaller in magnitude than theirs. Other analyses looking beyond Texas but

following similar plant-level specifications find more of a mixed bag with regard to the effect

of local and non-local drought on different technologies, in part because of the equilibrium

aspects of drought induced reductions in hydroelectric generation (Eyer and Wichman, 2018;

Qiu et al., 2023).

Overall the results from these analyses underscore the importance of accounting for

market dynamics and are informative for beginning to consider subsequent price effects.

First, the results showed that local drought conditions reduce generation from high water

use plants, but otherwise have limited impact. Given that generation must equate to load, it

is expected that generation somewhere in the market must be increasing. However, given that

local drought likely only affects a small part of the market it is entirely possible that other

plants are marginally increasing production, but the change is too small to be measured. In

contrast, the results showed that for worse average drought everywhere else in the market

there is significant growth in generation from dry plants. This aligns with the logic of the

previous scenario in that the more high water use plants that are exposed to drought (via

worse drought everywhere) the more substitute generation is necessary, and so the larger

increase in generation from unaffected, dry cooled plants. As outlined in Section 2 though,

dry cooled plants are generally operated last since they are more expensive than high water

use plants. With these dry cooled plants coming online, it is reasonable to expect that

average costs would increase as well as the wholesale energy prices, since the marginal plant

is now more likely to be a relatively high cost dry cooled plant. The potential change in

average efficiency of generating plants due to drought may be concerning for both maintaining

affordable energy prices and the efficient use of inputs.

4.4 Prices

There is a limited relationship between local drought conditions and wholesale energy prices.

In general, the left of Figure 5 shows that across all price measures the marginal effect
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estimates are not significantly different from zero. This aligns closely with the isolated

impact of local drought on generation: conditional on drought elsewhere in the market, the

localized change in output from a few plants is not likely to have a large enough impact on

the market to result in significant price changes.

In contrast, there are economically and statistically significant increases in all three

wholesale price measures as average drought elsewhere in the market worsens. For instance,

the right hand side of Figure 5 shows a 35% increase in average wholesale prices received

by plants in location l when average drought elsewhere in the market is severe, relative to

non-drought conditions. In dollar terms, this equates to a $8.28 increase relative to the mean

price of $23.66. As average drought elsewhere in the market worsens, more high water use

plants are potentially being affected leading to a larger shock to aggregate generation. Since

the dry cooled plants that come online to replace the lost generation are likely less efficient,

the marginal plant filling demand is likely more expensive, pushing prices higher as more

substitute production is needed.

Non-peak prices consistently respond to drought more than peak prices, providing

evidence that the price effect is driven by the difference in costs of the substitute price-setting

plant relative to the original price-setting plant. To explore this dynamic, first consider non-

peak hours when demand is low. Since lower marginal cost plants (non-thermals, high water

use, low water use) should be operated first, in periods of low demand without drought the

price setting plant is likely a low marginal cost plant. Under a drought shock though, by the

previous analyses, generation by dry cooled plants increases so that the new price setting

plant is likely a high cost dry cooled plant. Next consider peak hours when demand is high.

To meet demand in absence of drought, the price setting firm is likely a dry cooled plant.

With a drought shock, the price setting plant is still likely a dry cooled plant. Under the

assumption that the difference in marginal costs between two dry cooled plants is less than

the difference in marginal costs between a dry cooled and a not dry cooled plant, we would

expect to see a relatively smaller increase in prices during peak hours. This is exactly what

Figure 5 shows, highlighting the idea that the price effect magnitude is largely determined

by the available substitute plants relative to the original price setting plant.

The general relationship between prices and drought highlighted here is similar to that
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Figure 5: Drought Effect on Wholesale Prices

Note Figure plots effect estimates for the impact of drough on the natural log of wholesale energy prices.
Drought is defined as both drought at the plant’s location (left panel) and the average drought everywhere
else in the market (right panel). Non-drought conditions are the omitted category. Standard errors are
clustered at the plant and month-of-sample levels. 95% confidence intervals are denoted by the vertical bars.

documented in McDermott and Nilsen (2014). Since they use stream flow levels as their

measure of water availability, direct comparison of the coefficient magnitudes is difficult.

However the dose response follows a similar pattern as my analysis, with worse drought

conditions increasing prices more.

4.5 Additional Analyses

I addition to the above analyses, I also examine several alternative specifications to look at

the impact of drought on generation and prices, the results of which are summarized here

and presented in more detail in Appendix Section C. I first test several alternative ways

to measure variations in water supplies: precipitation, drought duration, and number of

climate divisions in drought. The results suggest that prices are primarily influenced by the
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Figure 6: Maps of Water Availability and Generation Mix

(a) Note Figure maps average annual precipitation
from 1980 to 2023 for each climate division.

(b) Note Figure maps share of generation capacity
that is high water use for each climate division as of
2023.

share of the market that is exposed to drought, more so than the severity of drought in any

one location. I also examine the robustness of my results to alternative sample selection

approaches. I find changing the sample selection process appears to have a limited impact

on the main takeaways of the analysis.

5 Empirical Evidence on Investment Decisions

Using average annual precipitation as a proxy for water availability, the eastern half of the US

is both generally wetter than the western half (6a) and has a larger share of capacity that is

high water use (6b) (Averyt et al., 2011). This correlation could reflect plants endogenously

responding to drought conditions when making investment decisions. However, this simple

cross-sectional correlation could also be capturing many other confounding factors, such

as the eastern half of the US being more densely populated or being less productive for

renewable technologies.

I explore the spatial correlation more carefully by using plant level analyses to compare

investment decisions across plants within a climate division, exploiting temporal variation

in the average local drought conditions before the investment decision. I focus on three

steps of the investment process to define the outcome variables of interest: the probability

that a constructed plant is technology type j, the probability an operating plant of type
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j is mothballed (shut down for an extended period21) and the retirement hazard of a type

j plant. I find that worse drought shifts new capacity investments away from high water

use plants and towards dry cooled. Once built, I find statistically insignificant increases in

the retirement hazard of high water use plants after periods of worse drought. In total, the

evidence is suggestive that plant investment is responsive to changes in drought conditions.

5.1 Methodology

I regress three measures of investment on average drought conditions in plant’s location l

over the τ periods leading up to the decision in period t, Droughtl,t−τ . For the sample of

plants in the US22, I estimate the following specification for plant i in location l in period t:

yi,t = g(βDroughtl,t−τ + ΓXi,t + ϕl + εi,t) (2)

For the outcome variable of technology choice at investment, yi,t is one of four binary variables

the measures whether plant i built in period t uses technology type j, where j is high water

use, low water use, dry or non-thermal. Since these outcomes are binary, the function g(·) is

a probit transformation. With this specification, I measure drought over the ten years before

period t, and the covariates Xi,t consist of a categorical variable for decade of construction.

For the binary outcome mothballing, I measure average drought over the year before period

t while controlling for the average drought over the nine years prior to τ , a linear year trend,

and a categorical variable for calendar month. I again use a probit specification. Lastly for

retirement I use a Cox proportional hazards model, where I again define τ to be ten years

and control for the year the plant was first operational. For all outcome variables I include

a climate division fixed effect, ϕl and cluster standard errors at the climate division level.

Additionally, to account for the large differences in capacity levels across technology types,

I weight each plant by its capacity so that results can be interpreted with respect to a MW

of generating capacity.23

21In the data I classify observations with zero generation and that have had zero generation for at least
12 consecutive periods prior as being mothballed.

22Expanding from ERCOT to the US provides a larger sample of plant investment.
23I winsorize plant capacity at the 90th percentile of the technology specific distribution.
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5.2 Identification

Identification for these analyses comes from exploiting temporal variation in drought con-

ditions within a constant climate division by linking drought to plants based on the timing

of the decision of interest. By using variation of drought within a climate division, I can

include climate division fixed effects to control for unobserved, time invariant environmental

characteristics that could make a location more or less suitable to different technology types,

irrespective of drought. However, the analyses are conditional on a plant being planned/built

in the first place, ignoring that this sample selection is potentially endogenous to drought

conditions (e.g. worse drought increases electricity demand, increasing total investment in

a location). Appendix Table A9 shows that there is not strong evidence that this is the

case, with worse previous drought conditions in a location having no statistically significant

relationship with total or new investment.

The goal of these exercises is to try and understand if firms change investment as a

function of changes in future drought conditions. To do this I rely on the assumption that

firms are informed by realizations of past drought shocks, so that the average drought con-

ditions preceding decisions fully capture firms’ expectations over future drought conditions.

As a robustness to test the validity of this assumption, I repeat the analysis for the outcome

of technology choice at investment while including the 10 year average drought after the

plant was built. The results, shown in Appendix Table A7, show a zero coefficient on future

drought which suggests that conditional on the information contained in past drought, future

drought realizations are unrelated to investment. This supports the assumption that firms

are basing their decisions on information available at period t, which is informed by past

drought realizations.

5.3 Results

In total, the results from the analyses provide suggestive evidence that firms respond to

drought conditions by investing in less water intensive technologies after worse drought.

Panel A of Table 2 shows that a one standard deviation worse drought in the ten years

before the plant is built is associated with a reduction in the probability that the plant uses
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high water use cooling of around 4.4 percentage points (14% over a base rate of 30 percentage

points). Alternatively, worse drought increases the probability new plants are low water or

dry cooled, with a relatively larger increase for dry cooled plants of 15%. With respect to

mothballing in Panel B, there is limited statistically significant evidence of a relationship

with either long run average drought or the drought in the previous year (separated into a

categorical variable). It is notable though that for high water use plants the marginal effect

point estimates are increasing with the previous year’s drought severity, suggesting a higher

mothball hazard, while the point estimates are stable around zero for the other technologies.

Lastly, turning to retirement, Panel C shows a statistically insignificant increase in the

retirement hazard for high water use plants with a one standard deviation worse previous

drought. Additionally, non-thermals have a statistically significant reduction in retirement

hazard with worse drought over the decade before.

The results for changes in investment align well with the previous results on changes

in production as a function of drought. The latter showed that experiencing a drought shock

is costly for high water use plants, but increases production from dry cooled plants. Under

this lens then, worse drought in the future would be expected to lower future returns to high

water use investment and increase returns for dry cooled plants. These changes in return

should translate into changes in investment, which follow identical patterns as to what the

results in Table 2 show. These results therefore provide suggestive evidence that there is

endogenous investment with respect to drought in electricity markets.

5.4 Additional Analyses

I addition to the above analyses, I also examine alternative measures of drought and in-

vestment with additional analyses, the results of which are summarized here and detailed in

Appendix Section D. I first quantify the relationship shown in Figure 6 and find that con-

ditional on key environmental variables, a one standard deviation increase in precipitation

increases the share of capacity that is high water use in a climate division by 7 percentage

points. With respect to alternative investment measures, I first use supplemental data on

planned power plants to provide suggestive evidence that drought has similar impacts on

investment before plants are constructed. Lastly, as an alternative to plant level analyses,
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Table 2: Drought Correlation with Investment Decisions

High Water Use Low Water Use Dry Non-Thermal
Panel A: Probability plant uses technology
PHDI 10 years before construction -0.044* 0.026 0.021* -0.001

(0.026) (0.028) (0.013) (0.007)
Mean Outcome 0.303 0.534 0.142 0.022
Observations 1,667 3,419 4,415 3,773
Panel B: Probability plant mothballed
PHDI 10-1 years before 0.018 0.017* -0.004 -0.001

(0.014) (0.009) (0.004) (0.002)
Mild PHDI last year 0.000 -0.010** -0.001 -0.002

(0.006) (0.005) (0.002) (0.002)
Moderate PHDI last year 0.012 -0.008 -0.003 -0.002

(0.012) (0.005) (0.003) (0.004)
Severe PHDI last year 0.014 -0.005 -0.005 -0.001

(0.018) (0.006) (0.004) (0.002)
Extreme PHDI last year 0.045 -0.005 -0.006 0.000

(0.037) (0.007) (0.006) (0.002)
Mean Outcome 0.081 0.035 0.052 0.032
Observations 36,390 49,602 518,470 464,823
Panel C: Probability plant retired
PHDI 10 years before 0.647 -0.626 -0.092 -0.615*

(3.989) (0.703) (0.233) (0.373)
Observations 196,286 206,907 913,717 610,775

Note Table presents correlations between historic standardized average drought and different decisions in the
investment process. In Panel A the outcome variable is a indicator for whether a plant at time of construction
uses the technology denoted in the column title, and drought is measured as the plant’s location average
PHDI value over the ten years before construction. In Panel B the outcome variable is an indicator for if a
plant of the type shown in the column heading is mothballed in a period, and drought is measured as the
plant’s location average PHDI over the last year, categorized by severity, and the average over the nine years
preceding the last year. In Panel C the outcome variable is an indicator for if a plant of the type shown in
the column heading is retired in a period, and drought is measured as the the plant’s location average PHDI
value over the ten years before the period. Plants are weighted by capacity. Standard errors are clustered
at the climate division level and shown in parentheses.
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I construct a climate division by decade panel. With this data set I find drought does not

seem to be related to total investment but there is suggestive evidence that the plant level

results hold with respect to technology specific investment.

6 Model Framework

This section presents a model of investment in capacity and electricity generation in ERCOT.

The previous analyses showed that drought shocks shift production away from high water

use plants and increase wholesale prices. Additionally, the previous results showed that over

the long run worse drought is associated with shifts in investment away from high water use

plants. Based only on these results, it is unclear what the full impact of drought due to

climate change will be, since the effect depends on 1) the amount of high water use genera-

tion under the adapted generation mix and 2) the set of substitute plants available during

times of drought. The model bridges this gap by incorporating drought as a determinant of

production costs in the spot market, combining the direct impact of drought on production

with the indirect changes working through the generation mix. The remainder of this section

presents the model primitives, then works backwards through the market structure, starting

with the spot market and ending with investment.

6.1 Model Primitives

The model is populated with heterogeneous firms, defined as a unique plant, categorized

by two key characteristics. First, each plant is assigned one of four mutually exclusive

technology types j: non-thermal, high water use, low water use, and dry. The technology

type determines a plant’s investment and production costs as well as its water needs - and

therefore exposure to drought shock costs. Second, each plant is allowed to build in one of

several locations l ∈ L, which determines the environmental shocks that the plant is exposed

to.

The decision process of each plant in the model is outlined by the following structure.

First, in an initial investment period (t=0) plants make a one time decision about how much

generating capacity to build, given their type and expectations over future states and prices.
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Then in every subsequent period (month) of the finite lifetime of the plant, they compete

in a repeated static spot market taking price as given and choosing how much electricity to

generate. Plants are constrained by their initial capacity choice, so that they cannot produce

more than their available capacity. The resulting market equilibrium is the set of capacity

choices that maximize expected discounted profit flows and the market prices which ensure

the spot markets clear.

The state variables, ηi,t, include price inelastic total load, Dt, and location specific

environmental variables of temperature tmpl,t, productivity of non-thermal generators ωl,t,

and drought zl,t. Drought is subject to both local and aggregate shocks, driving variation

in market wide drought conditions. ηi,t also includes production cost shocks, consisting of a

persistent productivity factor ϕi and an idiosyncratic cost shock εi,t drawn from a technology

specific distribution.

Since the main focus of the model is the role of drought, I abstract from two promi-

nent model features that are common in the energy markets literature. First, I treat both the

investment and generation decisions as static problems instead of dynamic. For the invest-

ment decision, this modeling choice means that I am unable to look at the evolution of the

generation mix in response to changing environmental conditions, but I am still able to cap-

ture changes in the stationary equilibrium mix. For the generation decision, this modeling

choice ignores start-up and ramping costs, though since the model is at a monthly level these

costs are likely less relevant. Second, I define all firms in the model as competitive, single

plants instead of strategic or multi-plant firms. This modeling assumption is problematic if

firms owning multiple plants respond to drought by strategically redistributing generation

across plants in a way that differs from plant level profit maximizing behavior. While this

type of behavior would likely drive my results to be attenuated toward a null impact, it

seems unlikely that it is occurring.
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6.2 Spot Market Generation

6.2.1 Non-thermal generation

The model assumes production by non-thermal plants is determined by exogenous envi-

ronmental conditions in the plant’s location and reduces the relationship into a simplified

productivity measure, ωl,t ∈ [0, 1], that scales capacity. The amount of electricity produced

by a non-thermal plant (j = NT ) in a given period is

qNT
i,t (ηt, Ki) =


0 if ωl,t + ϕi + εi,t < 0

(ωl,t + ϕi + εi,t)Ki,t if ωl,t + ϕi + εi,t ∈ [0, 1]

Ki,t if ωl,t + ϕi + εi,t > 1

(3)

The ωl,t, as reflected in Equation 12, captures aggregate and seasonal changes in productivity

(eg. wind turbines produce less in summer). Persistent plant specific productivity differences

(eg. a wind farm being in a windier location) are represented by ϕi, while εi,t captures highly

localized, time varying shocks. Plants are constrained by their capacity, so they cannot

produce more than Ki or less than zero.

The per period profit received by non-thermal plants is simply

πNT (ηt, Pt, Ki) = Ptq
NT
i,t (ηt, Ki) (4)

Conditional on building capacity, subsequent generation is assumed to be costless for non-

thermal plants. Therefore, each period non-thermal plants receive the wholesale price mul-

tiplied by their total output.

6.2.2 Thermal generation

Thermal plants takes prices as given and generate the quantity that maximizes current period

profits which, under the assumption of a competitive market, is where the plant’s marginal

cost equates the market price. I parameterize the spot market production cost functions for
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each technology type using the following specification,

cj(qji,t) = λj
1q

j
i,t + λj

2

q2i,t
2Ki,t

+ qji,t(ρ
jzl,t + γjXi,t + ϕi + εi,t) (5)

This specification of production costs is microfounded in the regression analyses for the

effect of drought on production and prices from Equation 1, and is similar to others in

the literature (Butters, Dorsey, and Gowrisankaran, 2021; Reguant, 2014). Costs are non-

linear in qji,t, and in particular dependent on the level of production relative to capacity. I

include a set of cost determinants, Xi,t, similar to those used in Equation 1, consisting of local

temperature and its square, a linear year trend and month binaries. I also include permanent

productivity differences, ϕi, and cost shocks εi,t. For this specification to accurately reflect

plant production costs, I rely on the assumption that the observed market and environmental

conditions are sufficient to capture changes in input costs, as well as the assumption that

the non-linearities captured by λj
1 and λj

2 accurately reflect any non-linearities in production

costs.

The parameter ρj is unique to my model, and captures the impact of drought on

generation as a shift in production costs. This decision is based on anecdotal evidence that

in response to water scarcity plants may bring in water from alternative surface water sources

or pump groundwater to maintain production (Averyt et al., 2011). For notational simplicity,

I denote the local drought conditions as zl,t, but in practice I alow for non-linearities in the

relationship by defining local drought conditions as falling into one of three categories: No

drought, moderate to severe, or extreme. Additionally, all parameters are technology specific

to capture the heterogeneous impact of drought shown in Section 4.

Under the cost function in Equation 5, profit maximization leads to the following
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optimal generation choice for thermal plants,

qji,t(ηt, Ki) =


0 if Pt < Λi,t

Pt−Λi,t

λj
2

Ki if Λi,t < Pt < Λi,t + λj
2

Ki if Pt > Λi,t + λj
2

(6)

where Λi,t = λj
1 + ρjzl,t + γjXi,t + ϕi + εi,t

Plants cannot produce negative amounts of electricity24, so for sufficiently low prices, Pt <

Λi,t, plants do not generate anything. For prices above this “turn on” point, plants generate

as a linear function of both price and capacity up until they reach their capacity constraint

Ki. The capacity constraint physically limits output so that for Pt > Λi,t + λj
2 generation is

perfectly inelastic at Ki.

The piece-wise linear optimal generation function gives rise to a piece-wise profit

function for thermal plants that is linear in Ki for positive production.

πj(ηt, Ki) =


0 if Pt ≤ Λi,t

Ki
(Pt−Λi,t)

2

2λj
2

if Λi,t < Pt < Λi,t + λj
2

Ki(Pt − Λi,t − λj
2

2
) if Pt > Λi,t + λj

2

(7)

6.2.3 Wholesale Prices

The equilibrium spot market price is determined by the intersection of the aggregated thermal

supply curve and the residual demand faced by thermal plants, defined as the total demand

less the total amount of generation from non-thermal plants.

D̃t = Dt −QN
t −

∑
i∈NT

qNT
i,t (ηt, Ki) (8)

24Empirically, this is not true. Idling plants may consume low levels of electricity while waiting to begin
generating, so that plants that are idle for long periods (like peaker plants) may consume more electricity
than they generate (EIA, n.d.).
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Given the capacity choices of the non-thermal plants, D̃t is stochastically determined. Aggre-

gating the individual supply curves results in an aggregate thermal supply curveQT (Pt; ηt, Ki)

that is a linear piece-wise function over Pt, shaped by the state variables and capacity

choices. Inverting the aggregate supply curve at D̃t returns the market clearing price

P ∗
t = QT−1

(D̃t; ηt, Ki).

The market clearing price is undefined if there is insufficient capacity to meet demand.

In these situations, the generators physically cannot supply enough electricity, resulting in

blackouts. Alternatively, there is not a unique price if non-thermal generation is sufficient

to entirely fill demand.

6.3 Investment in Capacity

6.3.1 Investment value function

In the initial investment period t = 0, each plant chooses how much generating capacity to

build to maximize the stream of discounted expected future profits, less investment costs.

The value a plant receives from building capacity amount Ki is

V (Ki) = E[
T j∑
t=1

βtπj(ηt, Ki)]− δj,l1 Ki − δj2K
2
i − νiKi (9)

In period t = 0, the plant must pay the investment costs of building capacity, which are

assumed to equal a quadratic in capacity plus an idiosyncratic cost shock νiKi, which is

known to the plant at the time of investment. Once built, plants receive profits in each

subsequent period from participation in the spot market. The profit each period depends

on the capacity choice Ki and the realized state variables ηt. Plants produce over a finite

horizon of T j months, and discount future profits at a rate of β. Maximizing V (Ki) with

respect to capacity returns the optimal capacity choice as a function of marginal profits

K∗
i =

E[
∑T j

t=1 β
tπ′j(ηt, K

∗
i )]− δj,l1 − νi

2δj2
(10)

The investment cost parameters, lifespan, and profit function are all technology type
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specific, as shown by the superscript j. In particular, investment costs are technology specific

to account for different infrastructure needs, such as low water use plants requiring additional

investment in cooling towers resulting in a cost which other plant types do not face. I

additionally allow for spatial variation in the linear investment cost parameter, denoted by

the superscript l, to capture spatial differences such as access to transmission infrastructure

and land use. Additionally, since any fixed operating costs in the spot market are not

separately identified from the linear investment costs, allowing spatial heterogeneity captures

some variation in unobserved fixed operating costs.

6.3.2 State transitions

Uncertainty from a plant’s perspective in t = 0 is over the realization of future state variables

and the resultant market clearing wholesale prices. For future state variables, environmental

variables and demand are allowed to be correlated, both across space and time, with their

distributions known to the plants in period t = 0. The model formalizes these relationships

through the following set of reduced form law of motion equations, where f(·) denotes a

linear function.

tmpl,t =ftmp,l(yeart,montht, v
tmp
t , utmp,l

l,t ) (11)

ωl,t =fω,l(yeart,montht, v
ω
t , u

ω,l
l,t ) (12)

zl,t =fz,l(zl,t−1, tmpl,t, v
z
t , u

z,l
l,t ) (13)

Dt =fD(yeart,montht, tmpt, tmp2t , Dt−1, Pt−1, v
D
t ) (14)

The over line notation denotes the market average of the state variable. Notice the re-

sulting distributions of the environmental state variables in Equations 11-13 are location

specific, seasonal (except z), subject to an idiosyncratic shock ul,t, and correlated across

space through a common shock vt. Drought is both auto-correlated and correlated with lo-

cal temperature, reflective of the natural hydrologic processes leading to drought (Hoerling,

2018). Additionally, while load is correlated with lagged prices, it is perfectly inelastic with

respect to current prices Pt. This assumption stems from the structure of electricity markets

where contracting between load serving entities and energy producers results in lagged pass
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through of prices, so that the end price consumers pay, and respond to, is an average of

previous prices, Pt−1, and not the current spot market price itself, Pt.

Forming expectations over future prices in period t = 0 is complicated by the fact that

prices are an equilibrium object, determined in part by each plant’s capacity decision. Given

the static set up of the problem, plants are simultaneously choosing capacity with imperfect

information over other plants’ investment and eventual production costs. For tractability, I

assume that plants abstract from the underlying game and instead approximate future prices

P̂ as the common knowledge function:

P̂t =fP̂ (yeart,montht, tmpt, tmp2t , zt, z
2
t , ωt, Dt, P̂t−1, v

P
t ) (15)

This structure assumes first that realizations of key state variables are sufficient to represent

the underlying spot market process, and second that plant investment does not impact future

prices. Under these assumptions, and with the law of motions for state variables, plants can

form expectations over future profit streams to solve for their optimal capacity investment

with the modified version of Equation 10:

K∗
i =

E[
∑T j

t=1 β
tπ′j(ηt, K

∗
i , P̂t)]− δj,l1 − νi

2δj2
(16)

7 Model Estimation

I estimate the model in two steps working backwards. I start by estimating the production

cost parameters for the spot market and the state space transition parameters. I use these

to construct the estimates of expected marginal profit flows used to estimate the investment

cost parameters.

7.1 Spot Market Production Costs

I estimate the parameters governing the marginal cost functions from the firms’ first order

conditions. The firm first order condition returns q∗ji,t as in Equation 6, which is replicated

and slightly rearranged in Equation 17. This provides a structure to estimate the cost
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function parameters with regression analysis, given data on the plant level total amount

generated qji,t, capacityKi, equilibrium market average wholesale price Pt, and environmental

and market covariates.

q∗ji,t
Ki

=


0 if Pt < Λi,t

Pt−Λi,t

λj
2

if Λi,t < Pt < Λi,t + λj
2

1 if Pt > Λi,t + λj
2

(17)

where Λi,t = λj
1 + ρjzl,t + γjXi,t + ϕi + εi,t

I estimate Equation 17 with a tobit regression model, estimated with maximum like-

lihood. In absence of the capacity constraints, the firm’s optimal
q∗ji,t
Ki

would equal
Pt−Λi,t

λj
2

.

However, because of the capacity constraints the generation amount observed in the data
qji,t
Ki

is a censored version of the optimal generation choice, leading to the Tobit specification.

Note that this specification is essentially identical to that used in the analyses of generation

based on Equation 1.25

Similar to the discussion in Section 4, the identification of most of the cost function

parameters stems from temporal variation. In particular, the cost parameters on drought

are identified from linking deviations from normal hydrologic conditions with changes in

plant level production. Identification of λj
1 and λj

2 is more complicated, since Pt is an

equilibrium object, and therefore a function of εi,t. With aggregate shocks causing cross-

sectional correlation in εi,t, estimates for λj
1 and λj

2 will be biased.26

I therefore instrument for Pt with total load Dt, the market average drought zl,t,

and total generation from non-thermals
∑

i∈NT qNT
i,t (ηt, Ki). The first stage parameters are

estimated concurrently within the Tobit maximum likelihood estimation. Demand is both a

relevant instrument for price, reflected by the high F-statistics shown in Table 3, and exoge-

nous since demand is short-run price inelastic. A risk to demand being a valid instrument

25Two key differences between Equations 1 and 17 are that I define only two categories of drought and
use the market average price instead of hub price to estimate Equation 17. I use the market average price to
maintain consistency with the model set up, though the parameter estimates are robust to using hub prices.

26While I include a linear year trend and month fixed effects to control for cyclical aggregate shocks, there
remains correlation from market wide, one-off shocks such as changes in fuel prices.
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is if the aggregate shock part of εi,t is autocorrelated. As shown in Equation 14, demand is

long-run price elastic so that if the aggregate shock part of εi,t is autocorrelated, the depen-

dence of Dt on Pt−1 results in correlation between Dt and εi,t. This channel of bias is likely

quite weak though, since determination of demand is dominated by seasonality and temper-

ature variation. Regressing Dt on a linear year trend and month fixed effects results in an R2

value of 0.94 (Appendix Table A12), leaving relatively little room for robust correlation with

the aggregate shock. I also include the instrument of market average drought to capture the

indirect effect of drought through changes in the market equilibrium documented in Section

4. Lastly, I include the instrument of total generation from non-thermals since this has no

direct impact on thermal plant generation except through changing the wholesale price.

The estimated cost parameters are presented in Table 3. The first row shows the

estimates of the cost curve curvature (λj
2) with respect to generation. This parameter is

lowest for dry cooled plants, suggesting they are relatively price elastic while low water use

plants are the least elastic. Additionally, using the full set of cost parameters to trace out

the marginal cost curves for each plant type shows that high water use and low water use

plants are consistently cheaper than dry cooled plants (Appendix Figure A12). This implies

high water and low water use plants come online first, while the more expensive dry cooled

plants operate as peaker plants - in line with anecdotal descriptions of these technologies.

The key parameters of interest, ρj1 and ρj2, show that drought significantly increases

costs only for high water use plants. For high water use plants, moderate to severe drought

increases marginal production costs by $16.26/MWh while extreme drought increases costs

by $35.29/MWh. Compared to an average wholesale price of $24/MWh, these estimates

reflect substantial increases in operating costs.

7.2 State Transition Parameters

I estimate the parameters dictating the transition of state variables over time (Equations

11-14) offline using the available data for plants in ERCOT from 2000 through 2022.27

27Because of the relatively low penetration of non-thermals and rapid technological changes in efficiency
in the beginning of the sample, I restrict the data to 2015-2022 for estimating the renewable capacity factor
transition parameters.
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Table 3: Cost Function Parameters

High water use Low water use Dry

Capacity used: λj
2 577.9*** 701.6*** 448.6***

(3.26) (5.21) (9.91)

Moderate-Severe: βj
1 16.26*** 0.147 -0.672

(3.07) (0.05) (-0.39)

Extreme: βj
2 35.29*** 1.573 -1.248

(3.94) (0.30) (-0.41)

F-stat 269 1745 2319
Observations 1,960 8,963 10,997

Note Table presents parameter estimates for thermal firm cost functions. Parameters are estimated separately
for each technology type. The estimate marginal cost at the average level of generation and the first stage
F-statistic are shown at bottom. Standard errors are shown in parentheses.

For temperature, drought, and renewable capacity factors, I estimate the parameters using

ordinary least squares with a location level panel. For quantity demanded I use ordinary

least squares with market level time-series data.

I ensure the transition parameters for predicted prices, P̂t, are internally consistent

when constructing the estimate of E[
∑T j

t=1 β
tπ′j(ηt, P̂t, K

∗
i )] used for estimating the invest-

ment cost parameters. Using the observed capacity in the data and the estimated state

variable transition parameters, I simulate a series of state variable draws. Given the real-

ized state variables, I solve for the equilibrium prices each period with the inverse aggregate

supply curve. I then use these simulated equilibrium prices to estimate new transition pa-

rameters for P̂t. Because demand is dependent on lagged prices, the process must be repeated

for parameter convergence.

I follow a similar routine to ensure the transition parameters for predicted prices

used in the counterfactual scenarios are internally consistent. Because investment is allowed

to change in the counterfactual analyses, the resulting equilibrium price process may also

change. To accomodate this I follow the process presented by Lee and Wolpin (2006). First,

I use the parameters estimated from the data to simulate the optimal investment in the

market given the counterfactual state variables distributions. Second, given the simulated

capacity, I simulate a series of state space draws and equilibrium prices to re-estimate the

transition parameters for Equation 15 in the same way as previously described. Using the
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updated parameters, I resolve for optimal investment and repeat the whole process until

convergence of the transition parameters for the price process. The resulting estimated tran-

sition parameters for the price process reflect the modeled plants having internally consistent

beliefs over future prices given the changed environment.

7.3 Investment Costs

I use the plant first order condition from Equation 10 to estimate the investment cost param-

eters. Under Equation 10, the optimal level of new capacity investment is a linear function of

expected future marginal profits, E[
∑T j

t=1 β
tπ′j(ηt, P̂t, K

∗
i )], and an idiosyncratic investment

cost shock, νi. I assume that

νi
iid∼ N(0, σj

η) (18)

and that it is uncorrelated with the production shocks (εi,t) faced by the firm. By Equation

7, profit each period is linear in Ki, so that in combination with independence of ηi and εi,t,

E[
∑T j

t=1 β
tπ′j(ηt, P̂t, K

∗
i )] is exogenous. I regress Ki on E[

∑T j

t=1 β
tπ′j(ηt, P̂t, K

∗
i )] using tech-

nology specific subsets to capture heterogeneity in investment costs. Due to small samples, I

combine high water and low water use plants, but include binary variables so that the linear

term δj,l1 is type specific. Additionally, due to potentially thin samples within each climate

division, I cluster divisions into three larger regions based on tercile of population density

and estimate a unique linear investment cost for each larger region.

I first numerically solve for E[
∑T j

t=1 β
tπ′j(ηt, P̂t, K

∗
i )] for each plant by simulating a

series of state space and wholesale price draws following Equations 11-15. I detrend the state

variables with respect to year to accommodate the one-time investment structure. I measure

capacity investment in the data as the plant level total capacity as of December 2022.

Two challenges for estimation arise from the censoring of investment at zero. First,

the capacity measured in the data reflects a censored version of the true optimal capacity

from Equation 10 since observed investment must be non-negative. I account for this by using

a Tobit regression with censoring at zero. Second, the data set only contains observations of

plants that have ever existed in ERCOT since 2000, and necessarily excludes hypothetical

plants that were never constructed. This sample selection could bias the estimated cost
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Table 4: Investment Cost Parameters

Non-thermals High water use Low water use Dry

Linear cost: δj1/1,000
Low Pop. Density 600.71*** 1,983.43*** 4,019.43*** 1,790.27***

(131.67) (433.00) (585.28) (106.16)
Mid Pop. Density 960.65*** 1,932.06*** 3,915.33*** 1,644.53***

(73.73) (362.78) (448.26) (82.33)
High Pop. Density 814.02*** 1,792.11*** 3,631.73*** 1,514.72***

(56.67) (220.13) (184.00) (17.55)

Quadratic cost: δj2/1,000 1.75** 0.08 0.16 0.81**
(0.73) (0.09) (0.17) (0.33)

Cost shock standard deviation: σj
ν/1,000 641.39 206.42 418.31 268.18

Estimated cost per MW (millions) .94 1.9 3.82 1.55
EIA cost per MW (millions) 1.4 1.1-2.7 1.1-2.7 0.5

Note Table presents parameter estimates for investment cost parameters. Parameters are estimated sepa-
rately for each technology type (column). There are no high water use plants in the southern region of Texas,
so the linear investment cost cannot be estimated. Total estimated investment costs at the median capacity
investment observed in the data and reported (EIA) estimates of median construction costs are shown at
bottom. Standard errors are shown in parentheses.

parameters by ignoring a relevant subsample of plants. To address this, I incorporate a

set of “never-constructed” plants into the sample, each with zero capacity and an expected

marginal profit constructed following the same process as for the real plants.

The estimated investment cost parameters are shown in Table 4. Across all technolo-

gies marginal costs are convex in capacity size, reflected in the positive values for δj2. I find

that investment costs are lowest for non-thermal plants, with 250 MW of capacity costing

$333 million. 250 MW of dry capacity in contrast costs $2 billion, while comparably sized

high water use and low water use thermals would cost $1.5 and $3.5 billion respectively.

Additionally, using the location specific linear investment costs I find that building thermals

plants is relatively cheaper in more population dense areas, while building non-thermals is

relatively cheaper in less densely populated areas. This is reasonable given the land use

requirements for the different technologies.

My total estimated plant costs for low water use thermals are similar to estimates from

Gowrisankaran, Langer, and Reguant (2024), who find a 250 MW combined cycle natural

gas (comparable to a high or low water use thermal) investment costs on average $1.6 billion.

However, the per MW investment cost of the median investment is generally substantially
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larger than construction cost estimates from the EIA for approximately comparable plants,

as shown in the last two lines of the table.28 It is reasonable that my estimated costs are

larger though, since there are additional costs to plant construction beyond the physical

construction costs such as siting permits or community negotiations.

7.4 Model Fit

I find that the modeled spot market process produces market outcomes that align closely

with the data. To test the model fit of the spot market stage of the model, I simulate state

space realizations and solve for the equilibrium price. The results of this exercise are shown

in column 2 of Table 5. Panel A of the table shows that capacity investment compared to

the data are mechanically identical. With respect to prices, Panel B shows that the spot

market process matches prices closely on average, though matches less well when looking

at prices by non-drought and drought periods. Additionally, as shown in Panel C, modeled

prices are more volatile than prices in the data.

Incorporating the investment decision into the model makes the model fit the data

worse. As shown in the third column of Panel A, the model over predicts investment in

non-thermals and dry cooled plants, and under predicts investment in high and low water

use plants. These differences in investment result in the equilibrium prices being consistently

higher and more variable than in the data.

8 Counterfactual Drought Scenarios

This section presents counterfactual analyses, simulating investment and production in ER-

COT under alternative climate scenarios. The goal of this exercise is to understand 1) to

what extent does the investment response mitigate the drought impact and 2) what does the

full effect of climate-diven drought look like. To do this I compare the market equilibriums

across two simulations, one with and one without endogenous investment.

28Note that engineering estimates generally focus on investment costs by prime mover and fuel type, not
cooling system. To provide approximate comparisons, I compare high water use and low water use plants to
investment costs for non-combustion natural gas plants.
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Table 5: Model Fit

Data
Data Capacity

Simulated Market
Simulated Capacity
Simulated Market

Panel A: Capacity Share
Non-thermal 0.39 0.39 0.38
High Water 0.11 0.11 0.11
Low Water 0.37 0.37 0.35
Dry 0.13 0.13 0.15
Panel B: Average Price
Average 23.82 23.23 24.83
Non-drought 20.59 18.89 20.70
Drought 30.28 34.51 36.14
Panel C: Price Standard Deviation
Average 13.66 25.99 24.61
Non-drought 9.50 22.18 21.12
Drought 17.78 30.21 26.60

Note Table compares simulated market results relative to the data. Column 1 shows the data moments,
column 2 shows the simulated price moments using capacity investment observed in the data, and column 3
shows the simulated investment and price moments, simulating both investment and the spot market.

I model future drought conditions using estimated drought index PDFs calculated by

Zhao and Dai (2022) under two alternative climate possibilities.29 The forecasted drought

conditions come from simulations by 25 different climate models within the Coupled Model

Intercomparison Project (CMIP6) using two alternative emissions scenarios: Low-to-Moderate

and High emissions.30 Using the PDFs from Zhao and Dai (2022) I transform each location

specific PHDI distribution, shifting the mean and increasing the standard deviation. For the

Low-to-Moderate emissions scenario, the mean PHDI is increased by one and the standard

deviation increased by 0.3. For the High emissions scenario, the mean PHDI increases by

2 and the standard deviation increases by 0.5. Transforming the PHDI densities this way

assumes that climate change will change drought conditions uniformly across Texas, but

29Zhao and Dai (2022) model the self-calibrated Palmer drought severity index with Penman–Monteith
potential evapotranspiration (scPDSIpm) which measures drought on a shorter hydrologic timeline than the
PHDI. Given the two indexes are similarly constructed from evapotranspiration, runoff, and precipitation, I
assume that the PHDI would experience identical distributional changes as the scPDSIpm.

30The CMIP6 is a collection of alternative climate models from different climate research centers around the
world. The goal of CMIP6 is to facilitate model comparison using standardized scenarios. These scenarios are
called Shared Socio-economic Pathways (SSPs), and represent alternative climate futures based on societal
changes such as population growth, urbanization, or land use changes (CMIP6 and Shared Socio-economic
Pathways overview n.d.). The estimates of drought conditions from Zhao and Dai (2022) are available for
SSP2-4.5 and SSP5-8.5.
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recognizes the initial heterogeneity in environmental conditions.31

I use the following process to solve for the counterfactual equilibrium market out-

comes. For each plant in the sample, I first solve for E[
∑T j

t=1 β
tπ′j(ηt, P̂t, K

∗
i )] as of De-

cember 2022. In simulations with endogenous investment, the P̂t and ηt used to calculate

E[
∑T j

t=1 β
tπ′j(ηt, P̂t, K

∗
i )] depend on the counterfactual drought distribution. In simulations

without endogenous investment, the P̂t and ηt used to calculate E[
∑T j

t=1 β
tπ′j(ηt, P̂t, K

∗
i )]

depend on the original drought distribution from the data. I then simulate optimal capacity

investment following Equation 10. Lastly, I repeatedly simulate the spot market process

to solve for Pt as a function of the simulated capacities and state variables, based on the

counterfactual drought distributions.

I first consider the change in investment across the alternative scenarios, shown in

Table 6. I find that investment in high water use technologies is relatively unchanged com-

pared to the Baseline simulations under the Low-to-Moderate scenario but decreases by 2,487

MW under the High scenario. From the initial investment level, the reduction in investment

under the High scenario is equivalent to about 18%. Additionally, in the High scenario,

the investment in the other three technologies increased, with relatively large gains for dry

cooled (928 MW or 4% of Baseline capacity) and low-water use (1,150 MW o4 2%) thermals

and relatively small increases for non-thermal technologies. Across the scenarios, the level

change in capacity suggests that the impact of future drought on investment is non-linear in

the average drought increase.

I next examine the resulting equilibrium prices, comparing outcomes across the al-

ternative climate scenarios both with and without adaptation of the technology mix. The

results under the exogenous technology mix can be interpreted as similar to existing work by

extrapolating from historic effect estimates, while the model framework incorporates market

dynamics in a more rigorous way. I find that when ignoring adaptation but capturing mar-

ket dynamics, worse future drought results in a limited increase in the average energy price

(Columns 1, 3, and 5 of Table 7). This is a result of more frequent drought mechanically

31I keep the transition parameters for drought and the other non-price state variables the same as estimated
in the data, since without further data or assumptions I cannot reliably estimate them under alternative
conditions. The consequences of this modeling limitation are unclear, as worse future drought will likely
increase temperatures and subsequent demand, while technological innovation may reduce total electricity
demand.
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Table 6: Simulated Total Investment (MW)

Baseline Low-to-Moderate High
Non-thermal 55,569.29 55,078.01 56,001.24
High Water 13,603.19 13,703.01 11,115.87
Low Water 49,930.18 49,775.17 51,080.83
Dry 23,134.20 22,468.48 24,062.57

Note Table presents simulated total capacity investment in MW by technology type. The first column
denotes the simulation using the historic drought distribution while the second and third columns use the
projected drought distributions under the Low-to-Moderate and High scenarios.

Table 7: Simulated Equilibrium Prices

Baseline Low-to-Moderate High

Exog Endog Exog Endog Exog Endog
Average 25.73 25.73 26.19 28.83 26.66 25.89
Non-drought 21.45 21.45 20.63 20.86 19.93 17.82
Drought 37.51 37.51 34.34 32.98 32.38 28.47

Note Table presents simulated equilibrium prices on average, during non-drought periods, and during drought
periods. The first set of columns denotes the simulation using the historic drought distribution while the
second and third columns use the projected drought distributions under the Low-to-Moderate and High sce-
narios. Columns denoted Exog are estimated using the simulated technology mix under Baseline conditions
(Column 1 of Table 6). Columns denoted Endog are estimated using the simulated technology mix under
the respective climate scenario.

resulting in more drought periods (increasing the average price) but less demand due to the

higher prices (decreasing the average price). This finding shows that simply extrapolating

from historic drought shocks is potentially missing key market dynamics.

Next, considering the role of endogenous investment, I find that the drought driven

shift in the generation mix slightly reduces the average price under the High scenario but

not the Low-to-Moderate scenario. The average price decline for the High scenario is in

part due to a reduction in prices during non-drought periods, which is likely driven by the

modest growth in non-thermals, which are assumed to be costless to operate. Across both

scenarios, the average price during drought periods is relatively lower compared to the same

scenario without adaptation. The declines in drought period prices resulting from changes

in the technology mix across both scenarios are substantial (12% for the High scenario), but

do not fully eliminate the drought vs non-drought price gap.
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9 Conclusion

Climate change is exacerbating drought conditions around the world. Given the key role of

electric grids in society, it is important to understand how a changing hydrologic landscape

may affect this water intensive sector. This means understanding both the response in the

spot market to a drought shock and accounting for potential adaptation of the grid through

changes in investment.

This paper examines the potential impact climate change-driven drought may have on

electricity markets. I first look at how drought shocks have previously impacted equilibrium

generation and prices, and find that local drought shifts generation away from high water

use plants towards dry cooled plants and leads to significant price increases. I then look

at if firms responded to perceived changes in drought risk when investing in existing power

plants. I find that firms do appear to respond to drought when investing in new capacity

by shifting towards less water intensive technologies. I then forecast what the equilibrium

mix of generating technologies would look like under alternative climate futures, and ex-

plore how equilibrium generation and prices subsequently change. I find that in line with

the reduced form analyses, investment shifts away from high water use plants and towards

less water intensive technologies, in particular dry cooled. Additionally, I find that the

subsequent electricity prices are generally lower under the alternative technology mixtures,

showing that endogenous investment help mitigate some of the price impact. Extrapolating

from existing literature would suggest that the reductions in electricity prices would lead

to progressive welfare improvements, through increased purchasing power and reductions in

temperature-related mortality (Pashardes, Pashourtidou, and Zachariadis, 2014; Chirakijja,

Jayachandran, and Ong, 2024).

However, the growth of relatively inefficient dry cooled plants raises concerns with

respect to exposure to pollution from plants. To explore this dynamic, I link my sample of

ERCOT plants to emissions data from the EPA’s Clean Air Markets Program Data. This

data shows that dry cooled power plants in my sample produce on average 9% more short tons

of CO2 per MWh of electricity generated than high water use plants. Using this statistic, a

simple back of the envelope calculation shows that the change in investment under the High
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simulation would result in an increase in CO2 emissions of 228,781 short tons. This equates

to about a 0.1% increase in overall CO2 emissions from electricity generation in ERCOT.

While the analyses generally focus specifically on Texas, it seems reasonable that

results from this analysis would extend to the rest of the US. Additionally, because high

water use technologies make up a significantly larger share of generation for the US as a

whole than in Texas, as shown in Table 1, the results from this analysis may be a lower

bound for the US wide effect of climate change induced drought. The Texas only analysis

shows that drought adversely impacts markets through high water use generators, with a

larger impact as a function of the extent the market is exposed to drought. Having high

water use generators be a larger player for the US market could increase the share of the

market suseptible to drought, leading potentially to larger impacts. However, since the US

as a whole is physically larger, larger spatial variation in drought conditions would likely help

mitigate some of the risk. While the structural model used in this paper is readily extendable

to the US at large, more data would be needed to account for spatial heterogeneity in prices,

costs, and transmission losses.

In addition to extending the scale of the analyses, there are several other avenues

for further progress in this line of research. First, I generally abstract from the role of

natural gas prices in determining investment and production. This is likely ignoring an

important channel through which climate change will further impact electricity markets.

Since hydraulic fracturing is also an extremely water reliant industry, worsening drought

may further impact markets through increasing natural gas prices. Second, I employ a static

decision model instead of a dynamic framework which prevents me from studying the timing

of investment shifts with respect to drought shocks. This is an interesting area for policy,

since is is ex ante unclear how precise firms beliefs are over future environmental conditions,

and providing information could be a cheap and effective solution to facilitate adaptation.

Lastly, the world of electricity generation is rapidly changing with new technologies and a

proliferation of energy storage. While increased storage will likely help mitigate risk from

climate change, an important caveat to note is that currently 96% of energy storage capacity

is through pumped-storage power plants which are entirely powered by water. The effect on

markets from climate change through these storage sources is another area in need of further

44



research.
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Appendices

A Background Supplement

A.1 Details on ERCOT Market

The market in ERCOT is an aggregation of three separate, sequential markets. In the first

market, the bilateral forward market, generating firms sell electricity directly to utilities

under forward contracts, well in advance of the realized load. The majority of transactions

in the whole sale market occur in the forward market. Generating firms then sell electricity

to ERCOT through a bidding process in the day ahead market, which occurs one day before

load is realized at 15 minute intervals. ERCOT purchases electricity so that the sum of

generation in the day ahead market and the bilateral forward market equals the expected

load at lowest cost. Lastly, firms again sell to ERCOT through a bidding process in the

real-time market, which occurs every five minutes. ERCOT purchases electricity so that the

sum of generation in the real-time market, the day ahead market, and the bilateral forward

market equals the realized load at lowest cost. Because firms have the opportunity to operate

in all three markets, prices across the three markets are highly correlated (ERCOT IMM,

2023).

Within the day ahead and real time markets there are also smaller “markets” which

occur as a result of physical transmission constraints (congestion) during periods of high

demand. Because of this submarket dynamic, ERCOT allows wholesale energy prices to

be location specific. The location specific prices are averaged up to a regional level “hub

price” for five different hubs covering the ERCOT service area. During uncongested periods

when electricity can flow freely across space the hub price equals the market average price.

However, during congested periods the hub price may differ from the market average price

leading to cross-sectional variation in the price generating firms receive.
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A.2 Details on Electricity Generation and Cooling

Almost all generating technologies produce electricity by spinning a turbine. Non-thermal

plants, like wind and hydroelectric, spin turbines using non-heat energy sources, namely

wind and water. Thermal generators, on the other hand, combust fuel to heat pressurized

steam and/or gas (called the prime mover), which are in turn used to spin a turbine. Due

to differences in the process of heating steam versus gas, the prime mover determines the

speed at which a generator can change production. Additionally, the prime mover impacts

how much heat energy is needed to produce 1 MWh of electricity, which translates into

the generator’s thermal efficiency. Generally, generators with higher thermal efficiency (i.e.

combined steam and gas and to a lesser extent steam only) are slower to change production

than less efficient generators (i.e. internal combustion and gas turbines) (EIA, 2023; Joshi

et al., 2020).

While many generators use steam as the prime mover, the system used to cool the

prime mover after generation is actually the thirstiest part of the process. Cooling systems

can be categorized into three general groups: once-through, recirculating, and dry. Once-

through cooling systems (in this paper called high water use) pull water from a nearby

source, cool the prime mover through conduction, and then return the now heated water

back to the original source. Recirculating (low water use) pull water from a nearby source,

cool the prime mover through conduction, and then cool and re-use the water until it is fully

evaporated away. Dry systems use air instead of water to cool the prime mover through

convection.

Besides determining the water needs of the generation process, the cooling system is

important since it can impact overall thermal efficiency. From the Rankin cycle, having a

larger change in temperature of the prime mover over the generation process leads to higher

thermal efficiency. Because once-through systems are continually using new water they are

better able to cool the prime mover back to lower temperatures after generation, resulting

in a larger change in temperature over the generation process. In contrast, recirculating

systems re-use water so that as it heats up it is more difficult to cool the prime mover to

lower temperatures, resulting in a smaller change in temperature over the generation process.
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Figure A1: Water Consumption by Technology

Note Figure plots the median volume of water consumed per MWh of electricity produced. Technologies are
disaggregated along the x-axis, first by cooling and then by fuel type. Values are collected from Macknick
et al. (2011).

Similarly, dry cooled systems are less efficient at reducing the temperature of the prime

mover. These differences in cooling result in meaningful differences in thermal efficiency of

plants (World Nuclear Association, 2020; EPRI and Commission, 2002).

It is relevant to note that water withdrawn does not equate to water consumed.

Once-through cooled systems withdraw large volumes of water but return the majority of

that water to the source. In contrast recirculating systems end up consuming almost all of

the water withdrawn (see Figure A1). While consideration of consumption is important for

water management and downstream users, it is beyond the scope of this paper.
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B Data Supplement

As discussed in the main body of the paper, I construct the panel used in this paper by

combining data from several sources. I detail the construction process below.

B.1 Plant Characteristics

Capacity, dates, and location I start with data from the US Energy Information Ad-

ministration (EIA) to identify power plants in the US. Using the EIA-860 forms which collect

generator-level data for plants with at least 1MW of capacity, I compile a roster of all op-

erating and retired generators in the US since 2001. I consider only power plants in the

contiguous US. Each generator observation contains information on the generator’s location,

capacity, year and month of first operation and retirement, and a unique id for the power

plant where the generator is located. I expand this roster into a monthly panel of genera-

tors. This is then aggregated into a panel of power plants containing information on plant

operating/retirement dates and capacity. I define the date the plant is first operating as

the earliest observed operating time of a generator at the plant. I define plant retirement

similarly as the latest retirement of a generator, if all generators are retired. I then define

plant level capacity each month as the sum of capacities of generators that are operating

during that month.32

Fuel and prime mover Assigning plant level fuel type (coal, hydroelectric, natural gas,

nuclear, etc) and prime mover (combustion, steam, or combined) is difficult since each plant

can house multiple types of generators. To find the primary fuel and prime mover used for

each plant, I use the capacity weighted modal technologies. Specifically, I identify the type

of fuel and prime mover that have the largest share of operating capacity each year for each

plant. I then define the primary fuel and prime mover as the technologies that most often

have the largest capacity share at the plant over the sample period.

I define thermal plants as those that primarily use coal, natural gas, or petroleum for

fuel. I omit nuclear and solar thermal generators from the thermal category, even though

32A plant is operating if it is after the date of first operation but before the retirement date.
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they are technically thermal generators and nuclear generators are extremely water intensive.

Nuclear plants have unique operating requirements, making them operate as “must-run”

technologies. Because of this, understanding how drought impacts these plants requires a

more nuanced analysis than is presented in this paper, and as such nuclear generators are

dropped from the sample. Solar thermal plants are also unique in their operation but are

less water intensive and relatively rare. I also drop these plants from the sample.

Cooling I use the EIA-860, Schedule 6 form to identify the type of cooling used by plants:

once through, recirculating, dry/hybrid, multiple. There are several caveats with this data

however. First, only plants with over 100MW of capacity are required to fill out the form,

though there is both non-compliance from some large plants and compliance from some

smaller plants. Given the compliance rate is likely unrelated to drought conditions, this

is not a threat to the internal validity of the analyses. Second, only plants with cooling

systems are included. Since combustion turbines do not require cooling systems, plants with

only combustion turbines would not appear in the data. As such I assume that all plants

that are identified as primarily using combustion as the prime mover but are missing cooling

information are dry cooled. Third, similar to fuel and prime mover types, a single plant may

house multiple generators linked to multiple, different cooling systems. I identify the plant’s

main cooling system type as follows. If a plant only has one type of cooling system observed

as operational it is assigned that type of cooling system. Of the plants with cooling system

data, this covers 81%. If a plant is observed as having multiple types of cooling systems

observed as operational at any point (eg. switching technologies over time or being dual

equipped) then it is assigned the type “multiple”. This accounts for 11% of the sample of

plants with cooling data. Lastly, I repeat the process for plants that are associated with only

retired cooling systems - those that only have one type are assigned that type (7%) while

those with multiple are assigned to the “multiple” type group. The last concern is that the

data is only available since 2009, though some plants that retired pre-2009 are still included.

Since having multiple cooling types is relatively rare, I assume that plants do not switch

technologies and assign plants their post-2009 cooling type as outlined above for all periods

of the main analysis sample. The resulting distribution of cooling technologies over time is
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Figure A2: Technology Mix Over Time

Note Figure plots total capacity associated with each of the four cooling technology groups over time for the
sample of plants in ERCOT.

shown in Figure A2.

B.2 Market Data

Generation I use the EIA-923 form to identify the monthly plant level amount of energy

generated. Monthly plant generation data is available from 2001 to 2023 at the plant by

fuel by prime mover level. I measure total plant generation as the sum of generation from

all technologies. Some plants are not consistently in the EIA-923 data, so end up with

missing data values for generation when they are operational. After exploring news articles

on a subset of these plants, it appears that this is reflective of plants being mothballed.

Therefore, I assume that plants that are operational but missing generation data have zero

generation and create an indicator for the plant being mothballed.

Prices and demand I use publicly available data from ERCOT for monthly measures

of load and market clearing prices. For load, I sum the available hourly load data to get
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ERCOT wide total load (measured in MWh) for each month in my sample from 2002 to 2023.

Market clearing prices (both DAM and RTM) are available in 15 minute intervals at both

the hub level and the ERCOT wide average since 2010. I aggregate prices to the monthly

level using a simple average of the 15 minute prices at both the hub and ERCOT wide level

to measure the average wholesale market price. I also exploit the detailed nature of the price

data to construct peak and non-peak prices at the hub and ERCOT level, defining peak

prices as the average price from 1pm to 7pm and non-peak as the average from 7pm to 1pm.

I combine the power plant data with the ERCOT market data using the plant coordinates

to map each plant to its respective ERCOT hub.

B.3 Drought Data

I measure drought in this analysis with the Palmer Hydrologic Drought Index (PHDI). This

index measure uses a long range of historic data on monthly precipitation, temperature,

soil moisture storage and a water balance model to classify hydrologic drought, such as

changes in reservoir levels or stream flows, into a scale from -10 to 10. The index values

are structured to reflect common classifications of drought, with 0 being “normal” based on

historic conditions, positive index values reflecting moist conditions and negative number

reflecting dry condtions. The distribution of this index for my sample is shown in Figure A3.

For ease of exposition, for my analysis I multiply the monthly PHDI observed in an area by

negative one, so that more positive numbers mean more severe drought. Monthly estimates

of the PHDI are defined for climatologically similar areas across the US, with 10 of these

climate divisions defined in Texas. These devisions are predefined by NOAA (Voase et al.,

2014). Additionally, the PHDI can be classified into broader categories of drought following

standardized cutoff levels: no drought [-10, 1), mild [1,2), moderate [2,3), severe [3,4), and

extreme [4,10).

I use the PHDI measure as opposed to alternative measures such as precipitation

or the Palmer Drought Severity Index since the PHDI is structured to capture longer run

hydrologic changes, and is available since 1895. The hydrologic change aspect is important

for my analysis, since power plants are most likely affected by changes in reservoir levels

or stream flows that would occur only after longer periods of drought instead of short term

57



Figure A3: Histogram of PHDI Over Sample

Note Figure plots histogram of scaled PHDI measures for climate divisions in Texas over 2000 to 2023.
Dashed vertical lines indicate breaks in the discrete categorization of the PHDI, as defined by NOAA.

shocks. Having the data for a long time span is also important, since it allows me to consider

the local drought conditions when plants were constructed.

I also use precipitation to measure differences in long run average water availability.

The PHDI is unable to measure this long-term difference since it measures local drought,

which is a deviation from normal conditions, mechanically requiring standardization of long-

run average conditions across space. This means that the average PHDI for all climate

divisions converges towards zero (ie. “normal” conditions) as the time horizon increases,

and so the PHDI misses that some areas are wetter during “normal” times than others.

B.4 Other Data Sources

I link the power plants in my sample to several other environmental and market variables.

First, I use the coordinates of plants to link them to local environmental characteristics such

as average solar irradience, wind speed, and monthly temperature. Solar irradience and

wind speed are time invariant categorical data produced by the National Renewable Energy
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Figure A4: Data Availability

Note Figure plots the range of time that key variables are available in the raw datasets.

Laboratory covering the US, and are important determinants of the productivity of solar and

wind generators. County temperatures are obtained from NOAA’s GHCNCAMS Gridded

2m Temperature data.

I also link plants to the appropriate county’s annual population density, which is

likely correlated with energy demand, transmission costs, and siting costs. The county

level population density from the US Census is only available after 2010, so I use linear

extrapolation to estimate the population densities from 2001 through 2009.

A visual representation of the available time horizons for key data is shown in Figure

A4.
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C Spot Market Supplementary Figures and Tables

I addition to main analyses, I also examine several alternative specifications to look at the

impact of drought on generation and prices, the results of which are summarized here.

Impact on Capacity Constrained I examine the impact of drought on the likelihood

that power plants are producing at capacity, using the same framework as Equation 1, in

Table A5. For low water use plants I find a positive, though statistically insignificant,

relationship between local drought and the probability a plant is capacity constrained and

a negative relationship with non-local drought. For dry cooled plants there appears to be

no clear relationship between being constrained and drought. There is insufficient data for

estimation of the relationship for high water use plants.

The results provide suggestive evidence that drought may change the likelihood low water use

plants hit their capacity constraint.

Alternative drought measures There are many possible ways to measure variations in

water supplies and I test several alternatives.

I test measuring drought with climate division monthly total precipitation, standard-

ized at the division level. The results for generation, shown in Table A1 show a statistically

significant increase in generation from low water use plants in response to a one standard de-

viation reduction in non-local precipitation, but otherwise generally negligible and imprecise

impacts for other thermal plants.33 Non-thermal generators show increases in production

with reductions in precipitation both locally and non-locally. Table A2 shows that when

measuring precipitation in both levels and deviations there are negligible impacts on prices.

The limited response when measuring drought with precipitation is explainable by the fact

that precipitation shocks are relatively short run and unlikely to significantly impact plant

water supplies.

I also examine the effect of drought duration, measured as continuous months in at

least moderate drought. I find that a one month increase in either local or non-local drought

33For comparison, the general categorizations of the PHDI align so that a one standard deviation in
PHDI measures corresponds to the cutoff between moderate and severe, while two standard deviations
approximately corresponds to the cutoff between severe and extreme.
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duration has negligible impacts on production quantities (Tables A3 and A4). However,

Table A5 shows small but statistically significant increases in prices of around 1%. The 75th

percentile of drought duration in the data is about 13 months, leading to an economically

meaningful price increase for long droughts.

I additionally estimate the effect of the number of climate divisions that are in at

least severe drought on prices. The results in Figure A6 show that prices increase when a

majority of climate divisions experience severe drought. In contrast, when I focus on prices

as a function of the worst drought level in the market, I find little effect with drought severity

as shown in Figure A7.

These results suggest that prices are primarily influenced by the share of the market that is

exposed to drought, more so than the severity of drought in any one location.

Sample selection In the main analyses, the sample I use covers all operating utility-owned

power plants in ERCOT since 2010. I examine the robustness of my results to focusing on

some subsets of observations.

I first vary the set of plants selected. In Figure A8 I repeat my analyses including

non-utility owned power plants, and find similar results as the main analysis for all but

dry cooled plants. Local drought now adversely affects these plants, suggesting plants that

produce electricity for non-market reasons experience reductions in demand for that energy

during drought conditions. Similarly, in Figure A9 I repeat the main analyses excluding

combined heat and power plants which also produce electricity for non-market (heating)

reasons. The results are again similar for all technologies but dry cooled plants, with local

drought again reducing their share of capacity used.

I next vary the range of time used in the analyses. In Figure A10 and Figure A11, I

repeat the main analyses excluding observations from June through September, since trans-

mission congestion is more likely in summer when demand is highest. I find similar results as

the main analyses, though the changes for dry cooled generation and prices are attenuated.

The reduced impact likely reflects that during low demand in winter, there are more low

cost plants available to substitute for the reduced high water use generation.

In total, changing the sample selection process appears to have a limited impact on the main
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Figure A5: Drought Effect on Probability Plant is Capacity Constrained

Figure plots marginal effect estimates for the impact of local and non-local drought on the probability a plant
is producing at capacity. The analyses are run separately for each of the four technology groups shown in
the legend. Non-drought conditions are the omitted category for both local and non-local drought. Standard
errors are clustered at the climate division level. 95% confidence intervals are denoted by the vertical bars.

takeaways of the analysis.
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Table A1: Precipitation Deviation Effect on Share of Capacity Used

(1) (2) (3) (4)
High Water Low water Dry Non-thermal

Local precipitation 0.0051** -0.0018 0.0037** -0.0037***
(0.0026) (0.0062) (0.0015) (0.0010)

Non-local precipitation -0.0025 0.0143*** 0.0002 -0.0116***
(0.0020) (0.0032) (0.0026) (0.0009)

Observations 2,415 9,370 14,602 25,256

Table presents marginal effect estimates for the impact of local and non-local drought on the share of capacity
used. Drought is measured with deviations from normal precipitation levels. The analyses are run separately
for each of the four technology types. Standard errors are clustered at the climate division level and shown
in parentheses.

Table A2: Precipitation Deviation Effect on Prices

(1) (2)
Levels Standard deviations

Local precipitation 0.0001 0.0028
(0.0057) (0.0115)

Non-local average precipitation -0.0040 -0.0085
(0.0189) (0.0369)

R-squared 0.590 0.590
Observations 53,261 53,261

Table presents marginal effect estimates for the impact of local and non-local drought on wholesale prices.
Drought is measured with deviations from normal precipitation levels. The analyses are run separately for
each of the three prices. Standard errors are clustered at the plant and month-of-sample level and shown in
parentheses.

Table A3: Drought Duration Effect on Share of Capacity Used

(1) (2) (3) (4)
High water Low water Dry Non-thermal

Local drought -0.000 0.001*** -0.001*** 0.000
(0.000) (0.000) (0.000) (0.000)

Non-local drought -0.000 0.000 0.001*** -0.000
(0.000) (0.000) (0.000) (0.000)

Observations 2,269 9,022 14,312 24,283

Table presents marginal effect estimates for the impact of local and non-local drought duration (in months)
on the share of capacity used. The analyses are run separately for each of the four technology types. Non-
drought conditions are the omitted category for both local and non-local drought. Standard errors are
clustered at the climate division level and shown in parentheses.
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Table A4: Drought Duration Effect on Probability Plant is Running

(1) (2) (3) (4)
High water Low water Dry Non-thermal

Local drought -0.001 0.001*** 0.002 0.000
(0.002) (0.000) (0.002) (0.000)

Non-local drought -0.001 -0.000 0.005 0.000
(0.001) (0.000) (0.003) (0.000)

Observations 2,269 9,022 14,312 24,249

Table presents marginal effect estimates for the impact of local and non-local drought duration (in months)
on the probability a plant is operating. The analyses are run separately for each of the four technology types.
Standard errors are clustered at the climate division level and shown in parentheses.

Table A5: Drought Duration Effect on Prices

(1) (2) (3)
Avgerage Non-peak Peak

Local drought duration 0.008*** 0.011*** 0.005**
(0.002) (0.002) (0.002)

Non-local drought duration 0.009*** 0.012*** 0.006***
(0.002) (0.003) (0.002)

Observations 51,501 35,306 17,257

Table presents coefficient estimates for the impact of local and non-local drought duration (in months) on
wholesale prices. The analyses are run separately for each of the three price measures. Standard errors are
clustered at the climate division level and shown in parentheses.
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Figure A6: Number of Division in Drought Effect on Prices

Figure plots coefficient estimates for the impact of the number of climate divisions experiencing at least
severe drought on wholesale prices. The analysis is run separately for each of the three prices shown in the
legend. Zero climate divisions in severe drought is the omitted category. Standard errors are clustered at
the plant and month-of-sample level. 95% confidence intervals are denoted by the vertical bars.
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Figure A7: Worst Drought in Market Effect on Prices

Figure plots coefficient estimates for the impact of the worst drought in the market on wholesale prices. The
analysis is run separately for each of the three prices shown in the legend. Zero climate divisions in severe
drought is the omitted category. Standard errors are clustered at the plant and month-of-sample level. 95%
confidence intervals are denoted by the vertical bars.

Figure A8: Production Response of Utility Plants

Figure plots marginal effect estimates for the impact of local and non-local drought on the share of capacity
used and the probability a plant is running, for the subset of plants owned by a utility. The analyses are
run separately for each of the four technology groups shown in the legend. Non-drought conditions are the
omitted category for both local and non-local drought. Standard errors are clustered at the climate division
level. 95% confidence intervals are denoted by the vertical bars.
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Figure A9: Production Response of Non-cogeneration Plants

Figure plots marginal effect estimates for the impact of local and non-local drought on the share of capacity
used and the probability a plant is running, for the subset of plants that are not combined heat and power
plants. The analyses are run separately for each of the four technology groups shown in the legend. Non-
drought conditions are the omitted category for both local and non-local drought. Standard errors are
clustered at the climate division level. 95% confidence intervals are denoted by the vertical bars.

Figure A10: Production Response During Non-Summer Months

Figure plots marginal effect estimates for the impact of local and non-local drought on the share of capacity
used and the probability a plant is running, for the subset of observations not occuring June through
September. The analyses are run separately for each of the four technology groups shown in the legend.
Non-drought conditions are the omitted category for both local and non-local drought. Standard errors are
clustered at the climate division level. 95% confidence intervals are denoted by the vertical bars.
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Figure A11: Drought Effect on Non-Summer Wholesale Prices

Figure plots coefficient estimates for the impact of local and non-local drought on wholesale prices in non-
summer months. The analysis is run separately for each of the three prices shown in the legend. Non-drought
conditions are the omitted category for both local and non-local drought. Standard errors are clustered at
the plant and month-of-sample level. 95% confidence intervals are denoted by the vertical bars.
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D Investment Supplementary Figures and Tables

I addition to the main analyses, I also examine alternative measures of investment and

drought with additional analyses, the results of which are summarized here.

Conditional correlation with precipitation I quantify the relationship shown in Figure

6 with OLS regression in Table A6. I condition the correlations on continuous measures of

average population density and total generating capacity and categorical variables for state,

average solar irradiance and average wind speed. The results show that wetter areas have

a higher share of capacity in high water use technologies and relatively less investment in

non-thermals, with both coefficients being marginally statistically significant at standard

levels.

Conditional on key environmental variables, water availability is positively correlated with

high water use technologies.

Cancellation of Planned Plant I also consider the outcome of whether a planned plant

is subsequently canceled as a function of drought. The data used for this analysis is only

available since 2015 and does not contain cooling information, so I am only able to categorize

observations as “likely dry”, “likely non-dry”, and “non-thermal”.34 I regress an indicator

for cancellation on the interactions of these classifications with the average drought between

2000 and 2023. The results, shown in Table A8, find that a one standard deviation worse

previous drought relatively decreases the likelihood non-thermal plants are canceled.

The analysis provides suggestive evidence that drought may also impact investment before

plants are constructed.

Climate Division Panel As an alternative to plant level analyses, I construct a climate

division by decade panel. With this data set I examine whether drought impacts whether

there is any investment in a location at all. Table A9 shows the estimated change in both

total capacity and total new capacity investment as a function of standardized previous

34I make this categorization based on information about the prime mover. Thermal combustion is classified
as “likely dry”, while non-combustion thermals are classified as “likely non-dry”.
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drought conditions. The results show minimal differences when using either level or log

changes across both possible outcome variables.

I also examine investment by technology as the share of new capacity constructed

in a location that uses the respective technology. The results, shown in Table A10 align

in direction of coefficient with the main results but are statistically insignificant. A one

standard deviation worse drought in the prior decade is associated with a 1 percentage point

reduction in the share of new capacity that is high water use, which over a 7 percentage

point base is reasonably large. For low water use, dry, and non-thermals, the table shows

statistically insignificant increases in capacity share.

In aggregate, drought does not seem to be related to total investment but there is suggestive

evidence that the plant level results hold with respect to technology specific investment.

Natural Gas Plants A potential concern is that structural change in electricity markets

due to the proliferation of cheap natural gas is driving a spurious correlation with drought.

To examine this, in Table A11 I repeat the main analysis for technology choice at investment

and mothballing using only natural gas fueled plants. There is insufficient sample variation

to examine retirement. For the probability a plant uses a given technology, I find similar

results as the main analysis, with drought reducing investment in high water use plants by

4.4 percentage points and increasing investment for dry by 2.1 percentage points. The results

for mothballing are also similar to the main results.

Overall, it appears that the main results are robust to focusing only on natural gas plants.
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Table A6: Conditional Correlations with Drought

(1) (2) (3) (4)
High water Low water Dry Non-thermal

Average
precipitation

0.068* 0.028 0.034 -0.067*

(0.039) (0.033) (0.042) (0.039)

Sample mean 0.107 0.286 0.254 0.353
Observations 328 328 328 328

Table presents conditional correlations between average precipitation since 1980 and the share of capac-
ity using each technology type as of 2023. The unit of observation in a climate division in January 2023.
Controls include continuous measures of average population density and total generating capacity and cat-
egorical variables for state, average solar irradience and average wind speed. Analysis is run separately for
each thermal technology. The sample average share of capacity for each technology is shown at bottom.
Heteroskedastic robust standard errors are shown in parentheses.

Table A7: Technology Choice at Investment Controlling Future Drought

(1) (2) (3)
High Water Low Water Dry

Mean PHDI 10 years before -0.048* 0.034 0.022
(0.028) (0.026) (0.017)

Mean PHDI 10 years after -0.004 0.003 -0.007
(0.028) (0.029) (0.014)

Mean 0.31 0.54 0.15
Observations 420,203 519,241 572,027

Table presents correlations between standardized average previous drought conditions and the probability
that an operating thermal plant is mothballed. Analysis is run separately for each thermal technology. Ob-
servations are weighted by plant capacity, winsorized at the 90th percentile. The sample average probability
of being mothballed is shown at bottom. Standard errors are shown in parentheses and clustered at the
climate division level.
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Table A8: Probability Planned Investment is Canceled

(1)
Canceled Indicator

Mean PHDI since 2000 0.038
(0.041)

Combustion indicator 0.074*
(0.045)

Combustion × PHDI -0.021
(0.044)

Non-TE indicator -0.121***
(0.034)

Non-TE × PHDI -0.082***
(0.028)

Cancel rate TE, non-combust 0.262
Cancel rate combustion 0.099
Cancel rate non-TE 0.292

Table presents correlations between drought between 2000 and 2023 and the probability a planned capacity
investment is canceled by 2023. The sample average probability of cancellation by technology type is shown
at the bottom. Standard errors are shown in parentheses and clustered at the climate division level.

Table A9: Total Investment in Climate Division

(1) (2) (3) (4)
Total ln(Total) New ln(New)

Previous decade average drought 6,364.594 -0.021 3,537.085 -0.085
(9,464.744) (0.026) (5,585.614) (0.079)

Sample mean 469,658 546,101 96,605 166,254
Observations 1,986 1,708 1,986 1,154

Table presents correlations between average drought in the period before and capacity in a climate division.
Outcome variables denoted by column titles are the total amount of capacity (1), the inverse hyperbolic sine
of total capacity (2), the total amount of new capacity (3), and the inverse hyperbolic sine of the total amount
of new capacity (4). Observation is at the climate division by decade level. Analysis conditions on categorical
variables for climate division and decade. Heteroskedastic standard errors are shown in parentheses.
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Table A10: New Investment Share by Technology

(1) (2) (3) (4)
High water Low water Dry Non-thermal

Average
drought

-0.011 0.003 0.007 0.011

(0.009) (0.012) (0.013) (0.008)

Sample mean 0.070 0.215 0.464 0.251
Observations 1,154 1,154 1,154 1,154

Table presents correlations between standardized average drought in the period before and share of new
capacity in a climate division that is each technology type. Technology type is denoted by column titles.
Observation is at the climate division by decade level. Analysis conditions on a continous measure of total
capacity in the location and categorical variables for climate division and decade. Heteroskedastic standard
errors are shown in parentheses.

Table A11: Investment Response for Natural Gas

High Water Use Low Water Use Dry

Panel A: Probability plant uses technology

PHDI 10 years before construction -0.041 0.024 0.045*
(0.037) (0.033) (0.023)

Mean Outcome 0.196 0.482 0.322
Observations 373 896 961

Panel B: Probability plant mothballed

PHDI 10-1 years before 0.041*** 0.030*** -0.006
(0.013) (0.010) (0.005)

Mild PHDI last year -0.000 -0.012** -0.000
(0.007) (0.005) (0.003)

Moderate PHDI last year 0.019 -0.008 -0.005
(0.012) (0.006) (0.004)

Severe PHDI last year 0.018 -0.001 -0.001
(0.019) (0.009) (0.006)

Extreme PHDI last year 0.052 -0.004 -0.004
(0.044) (0.009) (0.007)

Mean Outcome 0.083 0.042 0.040
Observations 15,823 34,692 221,991

Table presents correlations between average drought in the ten years before and after a thermal plant
is constructed and the probability of using a technology type. Analysis is run separately by technology
conditional on fuel type. Observations are weighted by plant capacity, winsorized at the 90th percentile.
Standard errors are shown in parentheses and clustered at the climate division level.
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Figure A12: Estimated Marginal Costs Curves

Note Figure plots estimated marginal cost curves for each thermal technology type. The black square
indicates the estimated marginal cost at average production.

Table A12: Seasonality of State Variables

Time and location Full

Temperature .9687154 .9958103
Drought .7292544 .9541526
Non-thermal productivity .7442725 .8317598
Demand .9416667 .9759566
Price .2175221 .1784845

Table presents R2 estimates from linear regressions using the variable shown on the left as the outcome vari-
able. The first column includes month-of-year dummies and a linear year trend fully interacted with climate
division dummies. The second column reflects the specifications denoted in Equations 11-15. Analyses use
either a climate division level panel or market wide time-series for estimation.
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